Gaussian Integrals in Two Dimensions

  • #1
Euge
Gold Member
MHB
POTW Director
2,073
244
Let ##a, b##, and ##c## be real numbers such that ##a## and ##c## are positive and ##ac > b^2##. Evaluate the double integral $$\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-ax^2 - 2bxy - cy^2}\, dx\, dy$$
 
  • Like
Likes topsquark
Physics news on Phys.org
  • #2
Diagonalizing [itex]\begin{pmatrix} a & b \\ b & c \end{pmatrix}[/itex] seems like a good start.
 
  • Like
Likes anuttarasammyak
  • #3
The matrix in post 2 is symmetric so it is diagonalized by multiplications of orthonormal matrix and its inversed so transversed matrix from the both ends. The orthonormal matrix change bases from x,y to another orthonormal bases, say u,v with ##dxdy=dudv##.
[tex]
ax^2+2bxy+cy^2=\begin{pmatrix}
x & y \\
\end{pmatrix}
\begin{pmatrix}
a & b \\
b & c \\
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
\end{pmatrix}
=
\begin{pmatrix}
u & v \\
\end{pmatrix}
\begin{pmatrix}
\lambda_1& 0 \\
0 & \lambda_2 \\
\end{pmatrix}
\begin{pmatrix}
u \\
v \\
\end{pmatrix}
=\lambda_1 u^2+ \lambda_2 v^2
[/tex]

In this new bases the double integral is carried out independently so the integral is
[tex]\frac{\pi}{\sqrt{\lambda_1\lambda_2}}[/tex]
where eigenvalues ##\lambda_1,\lambda_2## are solutions of quadratic secular equation
[tex](a-\lambda)(c-\lambda)-b^2=0[/tex]
[tex]\lambda^2 -(a+c)\lambda+ac-b^2=0[/tex]
Thus the integral is
[tex]\frac{\pi}{\sqrt{ac-b^2}}[/tex]
 
Last edited:
  • Like
Likes benorin
  • #4
\begin{align*}
\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-ax^2 - 2bxy - cy^2} dxdy & = \int_{-\infty}^\infty \int_{-\infty}^\infty e^{-a \left( x + \frac{b}{a} y \right)^2 + \frac{b^2}{a} y^2 - cy^2} dxdy
\nonumber \\
& = \int_{-\infty}^\infty \left( \int_{-\infty}^\infty e^{-a \left( x + \frac{b}{a} y \right)^2} dx \right) e^{- \frac{1}{a} (ac - b^2) y^2} dy
\nonumber \\
& = \sqrt{\frac{\pi}{a}} \int_{-\infty}^\infty e^{- \frac{1}{a} (ac - b^2) y^2} dy \qquad (\text{note: } ac-b^2 > 0)
\nonumber \\
& = \sqrt{\frac{\pi}{a}} \cdot \sqrt{\frac{a \pi}{ac-b^2}}
\nonumber \\
& = \frac{\pi}{\sqrt{ac-b^2}}
\end{align*}
 
Last edited:
  • Like
Likes benorin, anuttarasammyak, DrClaude and 2 others
Back
Top