MHB GCD Discrete Math: Proving GCD(a,b)=1

AI Thread Summary
The discussion focuses on proving properties of the greatest common divisor (GCD) under specific conditions. It presents two problems: first, proving that if GCD(a,b) = 1, then GCD(a+b, a-b) equals either 1 or 2. The second problem involves proving that if GCD(a,b) = 1, then GCD(2a+b, a+2b) equals either 1 or 3. A key approach involves showing that the GCD of combinations of a and b can be derived from their linear combinations. The thread emphasizes the importance of identifying common factors and their implications on the GCD results.
ssome help
Messages
3
Reaction score
0
Given that GCD(na,nb) = n * GCD(a,b) for a,b,n ∈ Z+

a) Prove that, if GCD(a,b) = 1 then GCD(a+b, a-b) = 1 or GCD(a+b,a-b) = 2
Hint: Let D = GCD(a+b, a-b), show that D | 2a and D | 2b thus D | GCD(2a,2b) then use the given
b) Prove that, if GCD(a,B) = 1, then GCD(2a+b, a+2b) = 1 or GCD(2a+b, a+2b) = 3

Any assistance would be great.
 
Physics news on Phys.org
ssome help said:
Given that GCD(na,nb) = n * GCD(a,b) for a,b,n ∈ Z+

a) Prove that, if GCD(a,b) = 1 then GCD(a+b, a-b) = 1 or GCD(a+b,a-b) = 2
Hint: Let D = GCD(a+b, a-b), show that D | 2a and D | 2b thus D | GCD(2a,2b) then use the given
b) Prove that, if GCD(a,B) = 1, then GCD(2a+b, a+2b) = 1 or GCD(2a+b, a+2b) = 3

Any assistance would be great.

Welcome to MHB, ssome help!

Nice problem. ;)

Did you try anything?
When you show something you tried, or if you explain where you are stuck, we can help you to solve and understand this.
 
The key fact to use here is that if d | x and d | y, then d divides any linear combination of x and y, i.e., d | (mx + ny) for any integer m and n.
 
Setting...

$\displaystyle x = a + b$

$\displaystyle y = a - b$ (1)

... solving (1) we obtain...

$\displaystyle a = \frac{x + y}{2}$

$\displaystyle b = \frac{x - y}{2}$ (2)

Now if x and y have a common factor different than 2, then x + y and x - y have the the same common factor and the same would be for a and b and that is a contradiction...

Kind regards

$\chi$ $\sigma$
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
Back
Top