- #1
ssome help
- 3
- 0
Given that GCD(na,nb) = n * GCD(a,b) for a,b,n ∈ Z+
a) Prove that, if GCD(a,b) = 1 then GCD(a+b, a-b) = 1 or GCD(a+b,a-b) = 2
Hint: Let D = GCD(a+b, a-b), show that D | 2a and D | 2b thus D | GCD(2a,2b) then use the given
b) Prove that, if GCD(a,B) = 1, then GCD(2a+b, a+2b) = 1 or GCD(2a+b, a+2b) = 3
Any assistance would be great.
a) Prove that, if GCD(a,b) = 1 then GCD(a+b, a-b) = 1 or GCD(a+b,a-b) = 2
Hint: Let D = GCD(a+b, a-b), show that D | 2a and D | 2b thus D | GCD(2a,2b) then use the given
b) Prove that, if GCD(a,B) = 1, then GCD(2a+b, a+2b) = 1 or GCD(2a+b, a+2b) = 3
Any assistance would be great.