- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textsf{Let $d = gcd(a,b)$
If $a=da'$ and $b=db'$,
show that $gcd(a',b')=1$}$
$\textsf{it would follow that then}$
$$d=gcd(da',db')$$
$\textsf{ok I would assume that $a'=1$ and $b'=1$ then}$
$$gcd(1,1)=1$$
$\textit{bk has no answer}$:(
If $a=da'$ and $b=db'$,
show that $gcd(a',b')=1$}$
$\textsf{it would follow that then}$
$$d=gcd(da',db')$$
$\textsf{ok I would assume that $a'=1$ and $b'=1$ then}$
$$gcd(1,1)=1$$
$\textit{bk has no answer}$:(
Last edited: