- #1
caffeinemachine
Gold Member
MHB
- 816
- 15
Let $F$ be any field. Let $p_1,\ldots, p_n\in F[x]$. Assume that $\gcd(p_1,\ldots,p_n)=1$. Show that there is an $n\times n$ matrix over $F[x]$ of determinant $1$ whose first row is $p_1,\ldots,p_n$.
When $n=2$ this is easy since then there exist $a_1,a_2\in F[x]$ such that $p_1a_1+p_2a_2=1$. So the required matrix has first row $p_1,p_2$ and the second row $-a_2,a_1$.
I am stuck when $n>2$.
When $n=2$ this is easy since then there exist $a_1,a_2\in F[x]$ such that $p_1a_1+p_2a_2=1$. So the required matrix has first row $p_1,p_2$ and the second row $-a_2,a_1$.
I am stuck when $n>2$.