- #1
jeeves
- 33
- 4
- TL;DR Summary
- Do Geiger counters cause collapse when they don't click?
I have the following elementary confusion about how measurement and collapse work in quantum mechanics.
Place an unstable particle and a Geiger counter in a sealed box. The particle can be in two states: not decayed (N) or decayed (D). Scale time so that one unit of time after the particle decays, the Geiger registers the decay product with an audible click. We neglect direct interactions between the counter and the particle itself. Start the experiment at t=0. Let the superposition of states for the particle be a(t)*N + b(t)*D after time t, where a(0) = 1 and b(0) = 0, and we have b(t) -> 1 as t -> infinity.
Suppose I wait until time t=100, and I do not hear the counter click. What is the state of the particle?
I can think of two possibilities:
1) It is in state a(100)*N + b(100)*D. This is because the particle has evolved until time t=100, and the Geiger counter has not interacted with the particle or done anything to affect its state.
2) It is in state a(1)*N + b(1)*D. At t=100, we know there has been no decay product formed until at least t=99, so at t=99 we know the particle did not decay yet. Then the state at t=99 is N, so at t=100 the particle has evolved into the superposition one second after starting at N.
Which of these is correct, and why?
Place an unstable particle and a Geiger counter in a sealed box. The particle can be in two states: not decayed (N) or decayed (D). Scale time so that one unit of time after the particle decays, the Geiger registers the decay product with an audible click. We neglect direct interactions between the counter and the particle itself. Start the experiment at t=0. Let the superposition of states for the particle be a(t)*N + b(t)*D after time t, where a(0) = 1 and b(0) = 0, and we have b(t) -> 1 as t -> infinity.
Suppose I wait until time t=100, and I do not hear the counter click. What is the state of the particle?
I can think of two possibilities:
1) It is in state a(100)*N + b(100)*D. This is because the particle has evolved until time t=100, and the Geiger counter has not interacted with the particle or done anything to affect its state.
2) It is in state a(1)*N + b(1)*D. At t=100, we know there has been no decay product formed until at least t=99, so at t=99 we know the particle did not decay yet. Then the state at t=99 is N, so at t=100 the particle has evolved into the superposition one second after starting at N.
Which of these is correct, and why?
Last edited: