- #1
- 35,724
- 14,142
I am looking for a reference describing the far-field electric and magnetic field of a dipole. However, I want a general formula for an arbitrary scalar function, and not specifically the usual formula which assumes a continuous sinusoid:
$$ \mathbf{B} = -\frac{\omega^2 \mu_0 p_0 }{4\pi c} \sin\theta \frac{e^{i\omega (r/c-t)}}{r} \mathbf{\hat{\phi} } $$
$$ \mathbf{E} = c \mathbf{B} \times \hat{\mathbf{r}}
= -\frac{\omega^2 \mu_0 p_0 }{4\pi} \sin\theta \frac{e^{i\omega (r/c-t)}}{r} \hat{\theta} $$
I would like something similar, but where I could use say a square pulse, or a Gaussian pulse, or some other non-oscillating waveform.
$$ \mathbf{B} = -\frac{\omega^2 \mu_0 p_0 }{4\pi c} \sin\theta \frac{e^{i\omega (r/c-t)}}{r} \mathbf{\hat{\phi} } $$
$$ \mathbf{E} = c \mathbf{B} \times \hat{\mathbf{r}}
= -\frac{\omega^2 \mu_0 p_0 }{4\pi} \sin\theta \frac{e^{i\omega (r/c-t)}}{r} \hat{\theta} $$
I would like something similar, but where I could use say a square pulse, or a Gaussian pulse, or some other non-oscillating waveform.