- #1
FranzS
- 64
- 14
- TL;DR Summary
- Searching for a proper notation to express the general explicit solution of the linear system of equation for solving polynomial interpolation.
In order to interpolate a number ##m## of points ##(x_i,y_i)## with a polynomial ##P_n(x)## of grade ##n = m-1## (assuming all ##x_i## have different values), one has to solve the linear system...
$$
\begin{flalign*}
& y_i = \sum_{k=0}^n \beta_k \, {x_i}^k \quad \quad \forall \, i=1,2,...,m &
\end{flalign*}
$$
... and find the coefficients ##\beta_k## which define the interpolating polynomial itself.I'm well aware this linear system can be represented in matrix/vector form and solved as such with dedicated calculations (for example, with Excel's array formulas), but I have always been interested in a general solution that could be written down explicitly.
That should be pretty trivial, but I couldn't find any specific info on the internet. So, I spent myself some hours solving such linear systems. Hereafter I'm listing the solutions for some values of ##m## (or, equivalently, ##n=m-1##), which easily reveal the pattern of the general solution (which is discussed further down below):
Case with ##\; m=1 \; \; (n=0)##
Relevantpolynomial monomial: ##\; P_0(x)=\beta_0##
Equivalent statement: "a single point is interpolated by a unique constant function"
Solution:
\begin{flalign*}
& \beta_0 = y_1 &
\end{flalign*}
Case with ##\; m=2 \; \; (n=1)##
Relevant polynomial: ##\; P_1(x)=\beta_0+\beta_1 x##
Equivalent statement: "there is only one line that can pass through any two given points"
Solutions:
\begin{flalign*}
& \beta_0 = - \left( \frac{ y_1 x_2 }{ x_1 - x_2} + \frac{ y_2 x_1 }{ x_2 - x_1} \right) \\
& \\
& \beta_1 = \frac{ y_1 }{ x_1 - x_2} + \frac{ y_2 }{ x_2 - x_1} &
\end{flalign*}
Case with ##\; m=3 \; \; (n=2)##
Relevant polynomial: ##\; P_2(x)=\beta_0+\beta_1 x + \beta_2 x^2##
Equivalent statement: "there is only one parabola that can pass through any three given (non-aligned) points"
Solutions:
\begin{flalign*}
& \beta_0 = \frac{ y_1 x_2 x_3}{ (x_1 - x_2)(x_1 - x_3) } + \frac{ y_2 x_1 x_3}{ (x_2 - x_1)(x_2 - x_3) } + \frac{ y_3 x_1 x_2}{ (x_3 - x_1)(x_3 - x_2) } \\
& \\
& \beta_1 = - \left( \frac{ y_1 (x_2 + x_3)}{ (x_1 - x_2)(x_1 - x_3) } + \frac{ y_2 (x_1 + x_3)}{ (x_2 - x_1)(x_2 - x_3) } + \frac{ y_3 (x_1 + x_2)}{ (x_3 - x_1)(x_3 - x_2) } \right) \\
& \\
& \beta_2 = \frac{ y_1 }{ (x_1 - x_2)(x_1 - x_3) } + \frac{ y_2 }{ (x_2 - x_1)(x_2 - x_3) } + \frac{ y_3 }{ (x_3 - x_1)(x_3 - x_2) } &
\end{flalign*}
Case with ##\; m=4 \; \; (n=3)##
Relevant polynomial: ##\; P_3(x)=\beta_0+\beta_1 x + \beta_2 x^2 + \beta_3 x^3##
Solutions:
\begin{flalign*}
& \beta_0 = - \left( \frac{ y_1 x_2 x_3 x_4}{ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4) } + \frac{ y_2 x_1 x_3 x_4}{ (x_2 - x_1)(x_2 - x_3)(x_2 - x_4) } + \frac{ y_3 x_1 x_2 x_4}{ (x_3 - x_1)(x_3 - x_2)(x_3 - x_4) } + \frac{ y_4 x_1 x_2 x_3}{ (x_4 - x_1)(x_4 - x_2)(x_4 - x_3) } \right) \\
& \\
& \beta_1 = \frac{ y_1 (x_2 x_3 + x_2 x_4 + x_3 x_4)}{ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4) } + \frac{ y_2 (x_1 x_3 + x_1 x_4 + x_3 x_4)}{ (x_2 - x_1)(x_2 - x_3)(x_2 - x_4) } + \frac{ y_3 (x_1 x_2 + x_1 x_4 + x_2 x_4)}{ (x_3 - x_1)(x_3 - x_2)(x_3 - x_4) } + \frac{ y_4 (x_1 x_2 + x_1 x_3 + x_2 x_3)}{ (x_4 - x_1)(x_4 - x_2)(x_4 - x_3) } \\
& \\
& \beta_2 = - \left( \frac{ y_1 (x_2+x_3+x_4)}{ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4) } + \frac{ y_2 (x_1+x_3+x_4)}{ (x_2 - x_1)(x_2 - x_3)(x_2 - x_4) } + \frac{ y_3 (x_1+x_2+x_4)}{ (x_3 - x_1)(x_3 - x_2)(x_3 - x_4) } + \frac{ y_4 (x_1+x_2+x_3)}{ (x_4 - x_1)(x_4 - x_2)(x_4 - x_3) } \right) \\
& \\
& \beta_3 = \frac{ y_1 }{ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4) } + \frac{ y_2 }{ (x_2 - x_1)(x_2 - x_3)(x_2 - x_4) } + \frac{ y_3 }{ (x_3 - x_1)(x_3 - x_2)(x_3 - x_4) } + \frac{ y_4 }{ (x_4 - x_1)(x_4 - x_2)(x_4 - x_3) } &
\end{flalign*}
... and let me write down one more, for a better understanding of how the pattern evolves...
Case with ##\; m=5 \; \; (n=4)##
Relevant polynomial: ##\; P_4(x)=\beta_0+\beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4##
Solutions:
\begin{flalign*}
&
\beta_0 =
\frac{ y_1 x_2 x_3 x_4 x_5}{ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_1-x_5) }
+
\frac{ y_2 x_1 x_3 x_4 x_5}{ (x_2 - x_1)(x_2 - x_3)(x_2 - x_4)(x_2-x_5)}
+
\frac{ y_3 x_1 x_2 x_4 x_5}{ (x_3 - x_1)(x_3 - x_2)(x_3 - x_4)(x_3-x_5)}
+
\frac{ y_4 x_1 x_2 x_3 x_5}{ (x_4 - x_1)(x_4 - x_2)(x_4 - x_3)(x_4-x_5)}
+
\frac{ y_5 x_1 x_2 x_3 x_4}{ (x_5 - x_1)(x_5 - x_2)(x_5 - x_3)(x_5-x_4)}
\\
& \\
&
\beta_1 =
- \left(
\frac{ y_1 (x_2 x_3 x_4 + x_2 x_3 x_5 + x_2 x_4 x_5 + x_3 x_4 x_5)}{ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_1-x_5) }
+
\frac{ y_2 (x_1 x_3 x_4 + x_1 x_3 x_5 + x_1 x_4 x_5 + x_3 x_4 x_5)}{ (x_2 - x_1)(x_2 - x_3)(x_2 - x_4)(x_2-x_5)}
+
\frac{ y_3 (x_1 x_2 x_4 + x_1 x_2 x_5 + x_1 x_4 x_5 + x_2 x_4 x_5)}{ (x_3 - x_1)(x_3 - x_2)(x_3 - x_4)(x_3-x_5)}
+
\frac{ y_4 (x_1 x_2 x_3 + x_1 x_2 x_5 + x_1 x_3 x_5 + x_2 x_3 x_5)}{ (x_4 - x_1)(x_4 - x_2)(x_4 - x_3)(x_4-x_5)}
+
\frac{ y_5 (x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4)}{ (x_5 - x_1)(x_5 - x_2)(x_5 - x_3)(x_5-x_4)}
\right)
\\
& \\
&
\beta_2 =
\frac{ y_1 (x_2 x_3 + x_2 x_4 + x_2 x_5 + x_3 x_4 + x_3 x_5 + x_4 x5)}{ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_1-x_5) }
+
\frac{ y_2 (x_1x_3 + x_1 x_4 + x_1x_5 + x_3x_4 + x_3x_5 + x_4x_5)}{ (x_2 - x_1)(x_2 - x_3)(x_2 - x_4)(x_2-x_5)}
+
\frac{ y_3 (x_1x_2 + x_1 x_4 + x_1x_5 + x_2x_4 + x_2x_5 + x_4x_5)}{ (x_3 - x_1)(x_3 - x_2)(x_3 - x_4)(x_3-x_5)}
+
\frac{ y_4 (x_1x_2 + x_ 1x_3 + x_1x_5 + x_2x_3 + x_2x_5 + x_3x_5)}{ (x_4 - x_1)(x_4 - x_2)(x_4 - x_3)(x_4-x_5)}
+
\frac{ y_5 (x_1x_2 + x_1 x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4)}{ (x_5 - x_1)(x_5 - x_2)(x_5 - x_3)(x_5-x_4)}
\\
& \\
&
\beta_3 =
- \left(
\frac{ y_1 (x_2 + x_3 + x_4 + x_5)}{ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_1-x_5) }
+
\frac{ y_2 (x_1 + x_3 + x_4 + x_5)}{ (x_2 - x_1)(x_2 - x_3)(x_2 - x_4)(x_2-x_5)}
+
\frac{ y_3 (x_1 + x_2 + x_4 + x_5)}{ (x_3 - x_1)(x_3 - x_2)(x_3 - x_4)(x_3-x_5)}
+
\frac{ y_4 (x_1 + x_2 + x_3 + x_5)}{ (x_4 - x_1)(x_4 - x_2)(x_4 - x_3)(x_4-x_5)}
+
\frac{ y_5 (x_1 + x_2 + x_3 + x_4)}{ (x_5 - x_1)(x_5 - x_2)(x_5 - x_3)(x_5-x_4)}
\right)
\\
& \\
&
\beta_4 =
\frac{ y_1 }{ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_1-x_5) }
+
\frac{ y_2 }{ (x_2 - x_1)(x_2 - x_3)(x_2 - x_4)(x_2-x_5)}
+
\frac{ y_3 }{ (x_3 - x_1)(x_3 - x_2)(x_3 - x_4)(x_3-x_5)}
+
\frac{ y_4 }{ (x_4 - x_1)(x_4 - x_2)(x_4 - x_3)(x_4-x_5)}
+
\frac{ y_5 }{ (x_5 - x_1)(x_5 - x_2)(x_5 - x_3)(x_5-x_4)}
&
\end{flalign*}
Patterns
According to the way in which I expressed the solutions, I notice that:
Question: by the way, is this last notation correct? I mean, is it legit to write the sum from ##j=1## when ##i## could also be ##1## and the requirement is ##j \neq i##?General expression of solutions
I think I can write a general expression for the coefficients ##\beta_0## and ##\beta_n## as follows:
\begin{flalign*}
& \beta_0 = (-1)^n \cdot \sum_{i=1}^{n+1} \left( y_i \cdot \prod_{j=1, \; j \neq i }^{n+1} \frac{x_j}{(x_i-x_j)} \right) \\
& \beta_n = \sum_{i=1}^{n+1} \frac{y_i}{\prod\limits_{j=1, \; j \neq i}\limits^{n+1} (x_i-x_j)} &
\end{flalign*}
Again, same question: is it legit to write the sum from ##j=1## when ##i## could also be ##1## and the requirement is ##j \neq i##?
Anyway, I can't really find a proper notation for a generic coefficient ##\beta_k \;##...
\begin{flalign*}
& \beta_k = (-1)^{(n+k)} \cdot \sum_{i=1}^{n+1} \left( y_i \cdot \frac{???}{\prod\limits_{j=1, \; j \neq i }\limits^{n+1} (x_i-x_j)} \right) &
\end{flalign*}
Can anyone advise me?
Thanks for your attention.
$$
\begin{flalign*}
& y_i = \sum_{k=0}^n \beta_k \, {x_i}^k \quad \quad \forall \, i=1,2,...,m &
\end{flalign*}
$$
... and find the coefficients ##\beta_k## which define the interpolating polynomial itself.I'm well aware this linear system can be represented in matrix/vector form and solved as such with dedicated calculations (for example, with Excel's array formulas), but I have always been interested in a general solution that could be written down explicitly.
That should be pretty trivial, but I couldn't find any specific info on the internet. So, I spent myself some hours solving such linear systems. Hereafter I'm listing the solutions for some values of ##m## (or, equivalently, ##n=m-1##), which easily reveal the pattern of the general solution (which is discussed further down below):
Case with ##\; m=1 \; \; (n=0)##
Relevant
Equivalent statement: "a single point is interpolated by a unique constant function"
Solution:
\begin{flalign*}
& \beta_0 = y_1 &
\end{flalign*}
Case with ##\; m=2 \; \; (n=1)##
Relevant polynomial: ##\; P_1(x)=\beta_0+\beta_1 x##
Equivalent statement: "there is only one line that can pass through any two given points"
Solutions:
\begin{flalign*}
& \beta_0 = - \left( \frac{ y_1 x_2 }{ x_1 - x_2} + \frac{ y_2 x_1 }{ x_2 - x_1} \right) \\
& \\
& \beta_1 = \frac{ y_1 }{ x_1 - x_2} + \frac{ y_2 }{ x_2 - x_1} &
\end{flalign*}
Case with ##\; m=3 \; \; (n=2)##
Relevant polynomial: ##\; P_2(x)=\beta_0+\beta_1 x + \beta_2 x^2##
Equivalent statement: "there is only one parabola that can pass through any three given (non-aligned) points"
Solutions:
\begin{flalign*}
& \beta_0 = \frac{ y_1 x_2 x_3}{ (x_1 - x_2)(x_1 - x_3) } + \frac{ y_2 x_1 x_3}{ (x_2 - x_1)(x_2 - x_3) } + \frac{ y_3 x_1 x_2}{ (x_3 - x_1)(x_3 - x_2) } \\
& \\
& \beta_1 = - \left( \frac{ y_1 (x_2 + x_3)}{ (x_1 - x_2)(x_1 - x_3) } + \frac{ y_2 (x_1 + x_3)}{ (x_2 - x_1)(x_2 - x_3) } + \frac{ y_3 (x_1 + x_2)}{ (x_3 - x_1)(x_3 - x_2) } \right) \\
& \\
& \beta_2 = \frac{ y_1 }{ (x_1 - x_2)(x_1 - x_3) } + \frac{ y_2 }{ (x_2 - x_1)(x_2 - x_3) } + \frac{ y_3 }{ (x_3 - x_1)(x_3 - x_2) } &
\end{flalign*}
Case with ##\; m=4 \; \; (n=3)##
Relevant polynomial: ##\; P_3(x)=\beta_0+\beta_1 x + \beta_2 x^2 + \beta_3 x^3##
Solutions:
\begin{flalign*}
& \beta_0 = - \left( \frac{ y_1 x_2 x_3 x_4}{ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4) } + \frac{ y_2 x_1 x_3 x_4}{ (x_2 - x_1)(x_2 - x_3)(x_2 - x_4) } + \frac{ y_3 x_1 x_2 x_4}{ (x_3 - x_1)(x_3 - x_2)(x_3 - x_4) } + \frac{ y_4 x_1 x_2 x_3}{ (x_4 - x_1)(x_4 - x_2)(x_4 - x_3) } \right) \\
& \\
& \beta_1 = \frac{ y_1 (x_2 x_3 + x_2 x_4 + x_3 x_4)}{ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4) } + \frac{ y_2 (x_1 x_3 + x_1 x_4 + x_3 x_4)}{ (x_2 - x_1)(x_2 - x_3)(x_2 - x_4) } + \frac{ y_3 (x_1 x_2 + x_1 x_4 + x_2 x_4)}{ (x_3 - x_1)(x_3 - x_2)(x_3 - x_4) } + \frac{ y_4 (x_1 x_2 + x_1 x_3 + x_2 x_3)}{ (x_4 - x_1)(x_4 - x_2)(x_4 - x_3) } \\
& \\
& \beta_2 = - \left( \frac{ y_1 (x_2+x_3+x_4)}{ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4) } + \frac{ y_2 (x_1+x_3+x_4)}{ (x_2 - x_1)(x_2 - x_3)(x_2 - x_4) } + \frac{ y_3 (x_1+x_2+x_4)}{ (x_3 - x_1)(x_3 - x_2)(x_3 - x_4) } + \frac{ y_4 (x_1+x_2+x_3)}{ (x_4 - x_1)(x_4 - x_2)(x_4 - x_3) } \right) \\
& \\
& \beta_3 = \frac{ y_1 }{ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4) } + \frac{ y_2 }{ (x_2 - x_1)(x_2 - x_3)(x_2 - x_4) } + \frac{ y_3 }{ (x_3 - x_1)(x_3 - x_2)(x_3 - x_4) } + \frac{ y_4 }{ (x_4 - x_1)(x_4 - x_2)(x_4 - x_3) } &
\end{flalign*}
... and let me write down one more, for a better understanding of how the pattern evolves...
Case with ##\; m=5 \; \; (n=4)##
Relevant polynomial: ##\; P_4(x)=\beta_0+\beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4##
Solutions:
\begin{flalign*}
&
\beta_0 =
\frac{ y_1 x_2 x_3 x_4 x_5}{ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_1-x_5) }
+
\frac{ y_2 x_1 x_3 x_4 x_5}{ (x_2 - x_1)(x_2 - x_3)(x_2 - x_4)(x_2-x_5)}
+
\frac{ y_3 x_1 x_2 x_4 x_5}{ (x_3 - x_1)(x_3 - x_2)(x_3 - x_4)(x_3-x_5)}
+
\frac{ y_4 x_1 x_2 x_3 x_5}{ (x_4 - x_1)(x_4 - x_2)(x_4 - x_3)(x_4-x_5)}
+
\frac{ y_5 x_1 x_2 x_3 x_4}{ (x_5 - x_1)(x_5 - x_2)(x_5 - x_3)(x_5-x_4)}
\\
& \\
&
\beta_1 =
- \left(
\frac{ y_1 (x_2 x_3 x_4 + x_2 x_3 x_5 + x_2 x_4 x_5 + x_3 x_4 x_5)}{ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_1-x_5) }
+
\frac{ y_2 (x_1 x_3 x_4 + x_1 x_3 x_5 + x_1 x_4 x_5 + x_3 x_4 x_5)}{ (x_2 - x_1)(x_2 - x_3)(x_2 - x_4)(x_2-x_5)}
+
\frac{ y_3 (x_1 x_2 x_4 + x_1 x_2 x_5 + x_1 x_4 x_5 + x_2 x_4 x_5)}{ (x_3 - x_1)(x_3 - x_2)(x_3 - x_4)(x_3-x_5)}
+
\frac{ y_4 (x_1 x_2 x_3 + x_1 x_2 x_5 + x_1 x_3 x_5 + x_2 x_3 x_5)}{ (x_4 - x_1)(x_4 - x_2)(x_4 - x_3)(x_4-x_5)}
+
\frac{ y_5 (x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4)}{ (x_5 - x_1)(x_5 - x_2)(x_5 - x_3)(x_5-x_4)}
\right)
\\
& \\
&
\beta_2 =
\frac{ y_1 (x_2 x_3 + x_2 x_4 + x_2 x_5 + x_3 x_4 + x_3 x_5 + x_4 x5)}{ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_1-x_5) }
+
\frac{ y_2 (x_1x_3 + x_1 x_4 + x_1x_5 + x_3x_4 + x_3x_5 + x_4x_5)}{ (x_2 - x_1)(x_2 - x_3)(x_2 - x_4)(x_2-x_5)}
+
\frac{ y_3 (x_1x_2 + x_1 x_4 + x_1x_5 + x_2x_4 + x_2x_5 + x_4x_5)}{ (x_3 - x_1)(x_3 - x_2)(x_3 - x_4)(x_3-x_5)}
+
\frac{ y_4 (x_1x_2 + x_ 1x_3 + x_1x_5 + x_2x_3 + x_2x_5 + x_3x_5)}{ (x_4 - x_1)(x_4 - x_2)(x_4 - x_3)(x_4-x_5)}
+
\frac{ y_5 (x_1x_2 + x_1 x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4)}{ (x_5 - x_1)(x_5 - x_2)(x_5 - x_3)(x_5-x_4)}
\\
& \\
&
\beta_3 =
- \left(
\frac{ y_1 (x_2 + x_3 + x_4 + x_5)}{ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_1-x_5) }
+
\frac{ y_2 (x_1 + x_3 + x_4 + x_5)}{ (x_2 - x_1)(x_2 - x_3)(x_2 - x_4)(x_2-x_5)}
+
\frac{ y_3 (x_1 + x_2 + x_4 + x_5)}{ (x_3 - x_1)(x_3 - x_2)(x_3 - x_4)(x_3-x_5)}
+
\frac{ y_4 (x_1 + x_2 + x_3 + x_5)}{ (x_4 - x_1)(x_4 - x_2)(x_4 - x_3)(x_4-x_5)}
+
\frac{ y_5 (x_1 + x_2 + x_3 + x_4)}{ (x_5 - x_1)(x_5 - x_2)(x_5 - x_3)(x_5-x_4)}
\right)
\\
& \\
&
\beta_4 =
\frac{ y_1 }{ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_1-x_5) }
+
\frac{ y_2 }{ (x_2 - x_1)(x_2 - x_3)(x_2 - x_4)(x_2-x_5)}
+
\frac{ y_3 }{ (x_3 - x_1)(x_3 - x_2)(x_3 - x_4)(x_3-x_5)}
+
\frac{ y_4 }{ (x_4 - x_1)(x_4 - x_2)(x_4 - x_3)(x_4-x_5)}
+
\frac{ y_5 }{ (x_5 - x_1)(x_5 - x_2)(x_5 - x_3)(x_5-x_4)}
&
\end{flalign*}
Patterns
According to the way in which I expressed the solutions, I notice that:
- For a given coefficient ##\beta_k##, there is a common factor equal to ##(-1)^{n+k}## in front of the whole expression.
- Each of the terms constituting the expression of a given coefficient ##\beta_k## has the form:
- ##A_i## is constituted by all possible "product-combinations" of the ##x## values other than ##x_i##, taken ##n-k## by ##n-k## . The number of such combinations is equal to the binomial coefficient ##\binom{n}{k} = \frac{n!}{k!(n-k)!}##
- Finally, ##B_i## is equal to:
Question: by the way, is this last notation correct? I mean, is it legit to write the sum from ##j=1## when ##i## could also be ##1## and the requirement is ##j \neq i##?General expression of solutions
I think I can write a general expression for the coefficients ##\beta_0## and ##\beta_n## as follows:
\begin{flalign*}
& \beta_0 = (-1)^n \cdot \sum_{i=1}^{n+1} \left( y_i \cdot \prod_{j=1, \; j \neq i }^{n+1} \frac{x_j}{(x_i-x_j)} \right) \\
& \beta_n = \sum_{i=1}^{n+1} \frac{y_i}{\prod\limits_{j=1, \; j \neq i}\limits^{n+1} (x_i-x_j)} &
\end{flalign*}
Again, same question: is it legit to write the sum from ##j=1## when ##i## could also be ##1## and the requirement is ##j \neq i##?
Anyway, I can't really find a proper notation for a generic coefficient ##\beta_k \;##...
\begin{flalign*}
& \beta_k = (-1)^{(n+k)} \cdot \sum_{i=1}^{n+1} \left( y_i \cdot \frac{???}{\prod\limits_{j=1, \; j \neq i }\limits^{n+1} (x_i-x_j)} \right) &
\end{flalign*}
Can anyone advise me?
Thanks for your attention.