- #1
jv07cs
- 44
- 2
Does anyone have a reference that explains how the general linear group GL(n) acts on vector spaces and dual spaces? Furthermore, I would like to understand why the canonical pairing ##\langle\cdot, \cdot\rangle: V \times V^* \to \mathbb{F}##, ##(v,\alpha) \mapsto \langle\alpha,v \rangle := \alpha(v)##, is GL(n) invariant.