- #1
Jonsson
- 79
- 0
Hello there, suppose we take ##M## to denote the spacetime manifold. Suppose also that ## ds^2 = g_{\mu \nu} dx^\mu dx^\nu##. I have some confusions with regards to the metric and the line elements.
My main confusion is at which points in the manifold are ## ds^2## defined? Is it correct that if ## p \in M##, then it only makes sense to fix ## ds^2## for each tangent space ## T_pM##, or is it fixed for each ## v \in T_pM ##? More specifically:
(1) If there is some position dependent line element, such as the Schwartzschild line element, then ##g_{\mu \nu}= g_{\mu \nu}(t,r, \theta, \phi) ##. Are these ##(r, \theta, \phi)## the coordinates of some ##(t,r, \theta, \phi) \in M##, or are they the coordinates of some ## (t,r, \theta, \phi) \in T_pM ##?
(2) Are the differentials ## dx^\mu(x)## evaluated at each ## x \in M## or ##x \in T_pM##?
My main confusion is at which points in the manifold are ## ds^2## defined? Is it correct that if ## p \in M##, then it only makes sense to fix ## ds^2## for each tangent space ## T_pM##, or is it fixed for each ## v \in T_pM ##? More specifically:
(1) If there is some position dependent line element, such as the Schwartzschild line element, then ##g_{\mu \nu}= g_{\mu \nu}(t,r, \theta, \phi) ##. Are these ##(r, \theta, \phi)## the coordinates of some ##(t,r, \theta, \phi) \in M##, or are they the coordinates of some ## (t,r, \theta, \phi) \in T_pM ##?
(2) Are the differentials ## dx^\mu(x)## evaluated at each ## x \in M## or ##x \in T_pM##?
Last edited: