General Relativity, Wald, exercise 4b chapter 2

  • #1
Unconscious
77
12
Suppose we have n vector fields ## Y_{\left(1\right)},\ldots,Y_{\left(n\right)} ## such that at every point of the manifold they form a basis for the tangent space at that point .
I have to prove that:

$$\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}-\frac{\partial Y_\nu^{\left(\sigma\right)}}{\partial x^\mu}=C_{\alpha\beta}^\sigma Y_\mu^{\left(\alpha\right)}Y_\nu^{\left(\beta\right)}$$

where ##C_{\alpha\beta}^\gamma ## are the coefficients of the expansion: ##\left[Y_{\left(\alpha\right)},Y_{\left(\beta\right)}\right]=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}##.



My proof attempt...

From a previous exercise that the book proposes, I was able to demonstrate that the components of the commutator vector field have this form:
##\left[Y_{\left(\alpha\right)},Y_{\left(\beta\right)}\right]^\mu=Y_{\left(\alpha\right)}^\nu\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}-Y_{\left(\beta\right)}^\nu\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}##.
Putting this together with ##\left[Y_{\left(\alpha\right)},Y_{\left(\beta\right)}\right]=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}##, I can write that:

## \left(Y_{\left(\alpha\right)}^\nu\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}-Y_{\left(\beta\right)}^\nu\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}\right)\frac{\partial}{\partial x^\mu}=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}^\mu\frac{\partial}{\partial x^\mu} ##.

Now, let this operator act on the dual vector ## Y^{\left(\sigma\right)} ## of the dual basis ## Y^{\left(1\right)},\ldots,Y^{\left(n\right)} ##:

## \left(Y_{\left(\alpha\right)}^\nu\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}-Y_{\left(\beta\right)}^\nu\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}\right)\frac{\partial\left(Y_\rho^{\left(\sigma\right)}dx^\rho\right)}{\partial x^\mu}=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}^\mu\frac{\partial\left(Y_\rho^{\left(\sigma\right)}dx^\rho\right)}{\partial x^\mu} ##

## \left(Y_{\left(\alpha\right)}^\nu\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}-Y_{\left(\beta\right)}^\nu\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}\right)Y_\mu^{\left(\sigma\right)}=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}^\mu Y_\mu^{\left(\sigma\right)} ##

Taking account of:

1) ## Y_\mu^{\left(\sigma\right)}\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}=\frac{\partial\left(Y_\mu^{\left(\sigma\right)}Y_{\left(\beta\right)}^\mu\right)}{\partial x^\nu}-Y_{\left(\beta\right)}^\mu\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}=0-Y_{\left(\beta\right)}^\mu\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu} ##
2) analogously ## Y_\mu^{\left(\sigma\right)}\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}=-Y_{\left(\alpha\right)}^\mu\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}##
3) ##Y_{\left(\gamma\right)}^\mu Y_\mu^{\left(\sigma\right)}=\delta_\gamma^\sigma ##

we can rewrite the expression as:

##\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}\left(Y_{\left(\alpha\right)}^\mu Y_{\left(\beta\right)}^\nu-Y_{\left(\alpha\right)}^\nu Y_{\left(\beta\right)}^\mu\right)=C_{\alpha\beta}^\sigma ##.

At this point, I contract on ## \alpha ## and ## \beta## arriving at:

##\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}\left(Y_{\left(\alpha\right)}^\mu Y_\gamma^{\left(\alpha\right)}Y_{\left(\beta\right)}^\nu Y_\rho^{\left(\beta\right)}-Y_{\left(\alpha\right)}^\nu Y_\gamma^{\left(\alpha\right)}Y_{\left(\beta\right)}^\mu Y_\rho^{\left(\beta\right)}\right)=C_{\alpha\beta}^\sigma Y_\gamma^{\left(\alpha\right)}Y_\rho^{\left(\beta\right)} ##

To conclude, I would need to show (for example) that ##Y_{\left(\alpha\right)}^\mu Y_\gamma^{\left(\alpha\right)}=\delta_\gamma^\mu ##, but I can't see how...

From duality I can only deduce this on coordinates:

## Y^{\left(\alpha\right)}Y_{\left(\beta\right)}=\delta_\beta^\alpha ##

## Y_\mu^{\left(\alpha\right)}Y_{\left(\beta\right)}^\nu dx^\mu\frac{\partial}{\partial x^\nu}=\delta_\beta^\alpha##

## Y_\mu^{\left(\alpha\right)}Y_{\left(\beta\right)}^\mu=\delta_\beta^\alpha##

something that I used in the steps above, but it seems to me to be different from what is needed in the last step to conclude.
 
Physics news on Phys.org
  • #2
Moderator's note: Thread moved to advanced physics homework help.
 
  • #3
Remember that in something like ##Y_{(\mu)}^{a}##, the ##(\mu)## part labels the particular vector in the basis whereas the ##a## is an index. Note that you have used Greek indices for both the vector-labels and the indices, whereas I will make it especially clear by using Latin indices (a,b,...) for the indices. The defining relation is:

##g_{ab} Y_{(\mu)}^{a} Y_{(\nu)}^{b} = \eta_{(\mu)(\nu)}##

From this, you can derive the following: ##\eta_{(\mu)(\nu)} Y_a^{(\mu)} Y_b^{(\nu)} = g_{ab}##. To show that it's true, contract both sides with ##Y_{(\rho)}^{b}## to obtain

##\eta_{(\mu) (\nu)} Y_a^{(\mu)} Y_b^{(\nu)} Y_{(\rho)}^b = \eta_{(\mu)(\nu)} Y_a^{(\mu)} \delta_{(\rho)}^{(\nu)} = \eta_{(\mu)(\rho)} Y_a^{(\mu)} = (Y_{(\rho)})_a = g_{ab} Y_{(\rho)}^b##

Raising the index ##b## gets you to the equation you want: ##Y_a^{(\mu)} Y_{(\mu)}^b = \delta_a^b##
 
  • #4
ergospherical said:
The defining relation is:

##g_{ab} Y_{(\mu)}^{a} Y_{(\nu)}^{b} = \eta_{(\mu)(\nu)}##
Sorry for my ignorance... what is ##\eta_{(\mu)(\nu)}##?
 
  • #5
You can drop those brackets - I just mean the components of the matrix ##\mathrm{diag}(-1,1,1,1)##, with the brackets included for consistency with the left hand side. (It's also probably more common to just drop the brackets everywhere and rely on just Greek/Latin, i.e. ##Y_{\mu}^a##)
 
  • #6
Ok, clear, thank you :)
 
Back
Top