- #1
Unconscious
- 77
- 12
Suppose we have n vector fields ## Y_{\left(1\right)},\ldots,Y_{\left(n\right)} ## such that at every point of the manifold they form a basis for the tangent space at that point .
I have to prove that:
$$\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}-\frac{\partial Y_\nu^{\left(\sigma\right)}}{\partial x^\mu}=C_{\alpha\beta}^\sigma Y_\mu^{\left(\alpha\right)}Y_\nu^{\left(\beta\right)}$$
where ##C_{\alpha\beta}^\gamma ## are the coefficients of the expansion: ##\left[Y_{\left(\alpha\right)},Y_{\left(\beta\right)}\right]=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}##.
My proof attempt...
From a previous exercise that the book proposes, I was able to demonstrate that the components of the commutator vector field have this form:
##\left[Y_{\left(\alpha\right)},Y_{\left(\beta\right)}\right]^\mu=Y_{\left(\alpha\right)}^\nu\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}-Y_{\left(\beta\right)}^\nu\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}##.
Putting this together with ##\left[Y_{\left(\alpha\right)},Y_{\left(\beta\right)}\right]=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}##, I can write that:
## \left(Y_{\left(\alpha\right)}^\nu\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}-Y_{\left(\beta\right)}^\nu\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}\right)\frac{\partial}{\partial x^\mu}=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}^\mu\frac{\partial}{\partial x^\mu} ##.
Now, let this operator act on the dual vector ## Y^{\left(\sigma\right)} ## of the dual basis ## Y^{\left(1\right)},\ldots,Y^{\left(n\right)} ##:
## \left(Y_{\left(\alpha\right)}^\nu\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}-Y_{\left(\beta\right)}^\nu\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}\right)\frac{\partial\left(Y_\rho^{\left(\sigma\right)}dx^\rho\right)}{\partial x^\mu}=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}^\mu\frac{\partial\left(Y_\rho^{\left(\sigma\right)}dx^\rho\right)}{\partial x^\mu} ##
## \left(Y_{\left(\alpha\right)}^\nu\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}-Y_{\left(\beta\right)}^\nu\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}\right)Y_\mu^{\left(\sigma\right)}=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}^\mu Y_\mu^{\left(\sigma\right)} ##
Taking account of:
1) ## Y_\mu^{\left(\sigma\right)}\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}=\frac{\partial\left(Y_\mu^{\left(\sigma\right)}Y_{\left(\beta\right)}^\mu\right)}{\partial x^\nu}-Y_{\left(\beta\right)}^\mu\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}=0-Y_{\left(\beta\right)}^\mu\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu} ##
2) analogously ## Y_\mu^{\left(\sigma\right)}\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}=-Y_{\left(\alpha\right)}^\mu\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}##
3) ##Y_{\left(\gamma\right)}^\mu Y_\mu^{\left(\sigma\right)}=\delta_\gamma^\sigma ##
we can rewrite the expression as:
##\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}\left(Y_{\left(\alpha\right)}^\mu Y_{\left(\beta\right)}^\nu-Y_{\left(\alpha\right)}^\nu Y_{\left(\beta\right)}^\mu\right)=C_{\alpha\beta}^\sigma ##.
At this point, I contract on ## \alpha ## and ## \beta## arriving at:
##\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}\left(Y_{\left(\alpha\right)}^\mu Y_\gamma^{\left(\alpha\right)}Y_{\left(\beta\right)}^\nu Y_\rho^{\left(\beta\right)}-Y_{\left(\alpha\right)}^\nu Y_\gamma^{\left(\alpha\right)}Y_{\left(\beta\right)}^\mu Y_\rho^{\left(\beta\right)}\right)=C_{\alpha\beta}^\sigma Y_\gamma^{\left(\alpha\right)}Y_\rho^{\left(\beta\right)} ##
To conclude, I would need to show (for example) that ##Y_{\left(\alpha\right)}^\mu Y_\gamma^{\left(\alpha\right)}=\delta_\gamma^\mu ##, but I can't see how...
From duality I can only deduce this on coordinates:
## Y^{\left(\alpha\right)}Y_{\left(\beta\right)}=\delta_\beta^\alpha ##
## Y_\mu^{\left(\alpha\right)}Y_{\left(\beta\right)}^\nu dx^\mu\frac{\partial}{\partial x^\nu}=\delta_\beta^\alpha##
## Y_\mu^{\left(\alpha\right)}Y_{\left(\beta\right)}^\mu=\delta_\beta^\alpha##
something that I used in the steps above, but it seems to me to be different from what is needed in the last step to conclude.
I have to prove that:
$$\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}-\frac{\partial Y_\nu^{\left(\sigma\right)}}{\partial x^\mu}=C_{\alpha\beta}^\sigma Y_\mu^{\left(\alpha\right)}Y_\nu^{\left(\beta\right)}$$
where ##C_{\alpha\beta}^\gamma ## are the coefficients of the expansion: ##\left[Y_{\left(\alpha\right)},Y_{\left(\beta\right)}\right]=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}##.
My proof attempt...
From a previous exercise that the book proposes, I was able to demonstrate that the components of the commutator vector field have this form:
##\left[Y_{\left(\alpha\right)},Y_{\left(\beta\right)}\right]^\mu=Y_{\left(\alpha\right)}^\nu\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}-Y_{\left(\beta\right)}^\nu\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}##.
Putting this together with ##\left[Y_{\left(\alpha\right)},Y_{\left(\beta\right)}\right]=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}##, I can write that:
## \left(Y_{\left(\alpha\right)}^\nu\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}-Y_{\left(\beta\right)}^\nu\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}\right)\frac{\partial}{\partial x^\mu}=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}^\mu\frac{\partial}{\partial x^\mu} ##.
Now, let this operator act on the dual vector ## Y^{\left(\sigma\right)} ## of the dual basis ## Y^{\left(1\right)},\ldots,Y^{\left(n\right)} ##:
## \left(Y_{\left(\alpha\right)}^\nu\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}-Y_{\left(\beta\right)}^\nu\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}\right)\frac{\partial\left(Y_\rho^{\left(\sigma\right)}dx^\rho\right)}{\partial x^\mu}=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}^\mu\frac{\partial\left(Y_\rho^{\left(\sigma\right)}dx^\rho\right)}{\partial x^\mu} ##
## \left(Y_{\left(\alpha\right)}^\nu\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}-Y_{\left(\beta\right)}^\nu\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}\right)Y_\mu^{\left(\sigma\right)}=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}^\mu Y_\mu^{\left(\sigma\right)} ##
Taking account of:
1) ## Y_\mu^{\left(\sigma\right)}\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}=\frac{\partial\left(Y_\mu^{\left(\sigma\right)}Y_{\left(\beta\right)}^\mu\right)}{\partial x^\nu}-Y_{\left(\beta\right)}^\mu\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}=0-Y_{\left(\beta\right)}^\mu\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu} ##
2) analogously ## Y_\mu^{\left(\sigma\right)}\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}=-Y_{\left(\alpha\right)}^\mu\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}##
3) ##Y_{\left(\gamma\right)}^\mu Y_\mu^{\left(\sigma\right)}=\delta_\gamma^\sigma ##
we can rewrite the expression as:
##\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}\left(Y_{\left(\alpha\right)}^\mu Y_{\left(\beta\right)}^\nu-Y_{\left(\alpha\right)}^\nu Y_{\left(\beta\right)}^\mu\right)=C_{\alpha\beta}^\sigma ##.
At this point, I contract on ## \alpha ## and ## \beta## arriving at:
##\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}\left(Y_{\left(\alpha\right)}^\mu Y_\gamma^{\left(\alpha\right)}Y_{\left(\beta\right)}^\nu Y_\rho^{\left(\beta\right)}-Y_{\left(\alpha\right)}^\nu Y_\gamma^{\left(\alpha\right)}Y_{\left(\beta\right)}^\mu Y_\rho^{\left(\beta\right)}\right)=C_{\alpha\beta}^\sigma Y_\gamma^{\left(\alpha\right)}Y_\rho^{\left(\beta\right)} ##
To conclude, I would need to show (for example) that ##Y_{\left(\alpha\right)}^\mu Y_\gamma^{\left(\alpha\right)}=\delta_\gamma^\mu ##, but I can't see how...
From duality I can only deduce this on coordinates:
## Y^{\left(\alpha\right)}Y_{\left(\beta\right)}=\delta_\beta^\alpha ##
## Y_\mu^{\left(\alpha\right)}Y_{\left(\beta\right)}^\nu dx^\mu\frac{\partial}{\partial x^\nu}=\delta_\beta^\alpha##
## Y_\mu^{\left(\alpha\right)}Y_{\left(\beta\right)}^\mu=\delta_\beta^\alpha##
something that I used in the steps above, but it seems to me to be different from what is needed in the last step to conclude.