- #1
lriuui0x0
- 101
- 25
We know
$$
K(x,t) = \frac{1}{\sqrt{4\pi t}}\exp(-\frac{x^2}{4t})
$$
is a solution to the heat equation:
$$
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}
$$
I would like to ask how to prove:
$$
u(x,t) = \int_{-\infty}^{\infty} K(x-y,t)f(y)dy
$$
is also the solution to the equation, and also:
$$
\lim_{t\to 0^+} u(x,t) = f(x)
$$
$$
K(x,t) = \frac{1}{\sqrt{4\pi t}}\exp(-\frac{x^2}{4t})
$$
is a solution to the heat equation:
$$
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}
$$
I would like to ask how to prove:
$$
u(x,t) = \int_{-\infty}^{\infty} K(x-y,t)f(y)dy
$$
is also the solution to the equation, and also:
$$
\lim_{t\to 0^+} u(x,t) = f(x)
$$