- #1
gruba
- 206
- 1
Homework Statement
Find the general solution to differential equation [itex]y''-6y'+9y=e^x((2x+1)\cos x+(x+3)\sin x)[/itex]
Homework Equations
-Non homogeneous differential equation
-Homogeneous differential equation with constant coefficients
-Method of undetermined coefficients
The Attempt at a Solution
First, we find the solution for homogeneous equation [itex]y''-6y'+9y=0\Rightarrow (\lambda -3)^2=0\Rightarrow \lambda_1=\lambda_2=3[/itex].
Roots are real and multiple [itex]\Rightarrow y_h=c_1e^{3x}+c_2xe^{3x}[/itex].
We can find a particular solution for the equation by method of undetermined coefficients:
[tex]y_p=e^x((Ax+B)\cos x+(Cx+D)\sin x)=Axe^x\cos x+Be^x\cos x+Cxe^x\sin x+De^x\sin x[/tex]
[tex]{y'}_p=xe^x\cos x(A+C)+e^x\cos x(A+B+D)+xe^x\sin x(C-A)+(e^x\sin x(D+C-B))[/tex]
[tex]y′′p=2Ce^x\cos x+e^x\cos x(2D+2C+2A)−2Axe^x\sin x+e^x\sin x(2C−2B−2A)[/tex]
[tex]y′′_p−6y′_p+9y_p=xe^x\cos x(4C+3A)+e^x\cos x(−4A+3B+2C−4D)+xe^x\sin x(4A+3C)+e^x\sin x(−2A+4B−4C+3D)=2xe^x\cos x+e^x\cos x+xe^x\sin x+3e^x\sin x[/tex]
Solving the system:
[itex]4C+3A=2[/itex]
[itex]−4A+3B+2C−4D=1[/itex]
[itex]4A+3C=1[/itex]
[itex]−2A+4B−4C+3D=3[/itex]
gives [itex]A=−2/7,B=23/35,C=5/7,D=31/35[/itex]
that are wrong results.
Could someone check for possible errors?
Coefficients should be [itex]A=2/5,B=21/25,C=−1/5,D=−3/25[/itex]
Last edited: