Generalized Eigenvalues of Pauli Matrices

In summary, the study of generalized eigenvalues of Pauli matrices explores the eigenvalue problems associated with these fundamental quantum mechanical operators. The Pauli matrices, which represent spin-1/2 particles, are analyzed to determine their eigenvalues and eigenvectors under various conditions. This research has implications in quantum mechanics and quantum information theory, providing insights into the behavior of quantum states and the effects of different perturbations. The findings also contribute to the understanding of quantum measurements and the manipulation of quantum systems.
  • #1
thatboi
133
18
Consider a generic Hermitian 2x2 matrix ##H = aI+b\sigma_{x}+c\sigma_{y}+d\sigma_{z}## where ##a,b,c,d## are real numbers, ##I## is the identity matrix and ##\sigma_{i}## are the 2x2 Pauli Matrices. We know that the eigenvalues for ##H## is ##d\pm\sqrt{a^2+b^2+c^2}## but now suppose I have the matrix ##\tilde{H} = (\sigma_{x} \otimes A) + (\sigma_{y} \otimes B) + (\sigma_{z} \otimes C)## , where ##\otimes## denotes the Kronecker product and ##A,B,C## are now N x N diagonal matrices with diagonal entries ##a_{i},b_{i},c_{i}## respectively. I'm wondering if there is some nice generalization of the 2x2 eigenvalue formula in my first statement? I feel like there must be.
 
Physics news on Phys.org
  • #2
I did some half-baked thinking and scratch work and think it is tractable. Seems like the answer is ##c_i \pm \sqrt{a_i^2+b_i^2}##. The matrix can be written as something that looks like:

##\tilde{H}=diag(a_1\sigma_x+b_1\sigma_y+c_1\sigma_z, \ldots,a_N\sigma_x+b_N\sigma_y+c_N\sigma_z)##

So it is just a bunch of copies of the simple case.
 
Back
Top