I Generalized Eigenvalues of Pauli Matrices

thatboi
Messages
130
Reaction score
20
Consider a generic Hermitian 2x2 matrix ##H = aI+b\sigma_{x}+c\sigma_{y}+d\sigma_{z}## where ##a,b,c,d## are real numbers, ##I## is the identity matrix and ##\sigma_{i}## are the 2x2 Pauli Matrices. We know that the eigenvalues for ##H## is ##d\pm\sqrt{a^2+b^2+c^2}## but now suppose I have the matrix ##\tilde{H} = (\sigma_{x} \otimes A) + (\sigma_{y} \otimes B) + (\sigma_{z} \otimes C)## , where ##\otimes## denotes the Kronecker product and ##A,B,C## are now N x N diagonal matrices with diagonal entries ##a_{i},b_{i},c_{i}## respectively. I'm wondering if there is some nice generalization of the 2x2 eigenvalue formula in my first statement? I feel like there must be.
 
Physics news on Phys.org
I did some half-baked thinking and scratch work and think it is tractable. Seems like the answer is ##c_i \pm \sqrt{a_i^2+b_i^2}##. The matrix can be written as something that looks like:

##\tilde{H}=diag(a_1\sigma_x+b_1\sigma_y+c_1\sigma_z, \ldots,a_N\sigma_x+b_N\sigma_y+c_N\sigma_z)##

So it is just a bunch of copies of the simple case.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top