- #1
DreamWeaver
- 303
- 0
This thread is dedicated to the study of Log-Trig series of the form:
\(\displaystyle \mathscr{S}_{(m, n)} (z) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \sin 2\pi k z\)\(\displaystyle \mathscr{C}_{(m, n)} (z) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \cos 2\pi k z\)Where \(\displaystyle m, n \in \mathbb{Z} \ge 1\), and \(\displaystyle 0 < z < 1 \in \mathbb{Q}\).This is NOT a tutorial, so by all means DO chime in, if it tickles yer fancy... :D
\(\displaystyle \mathscr{S}_{(m, n)} (z) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \sin 2\pi k z\)\(\displaystyle \mathscr{C}_{(m, n)} (z) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \cos 2\pi k z\)Where \(\displaystyle m, n \in \mathbb{Z} \ge 1\), and \(\displaystyle 0 < z < 1 \in \mathbb{Q}\).This is NOT a tutorial, so by all means DO chime in, if it tickles yer fancy... :D