Generalized Log-Trig series related to the Hurwitz Zeta

In summary: Bigg\}In summary, this thread is dedicated to the study of Log-Trig series of the form \mathscr{S}_{(m,n)}(z) and \mathscr{C}_{(m,n)}(z), where m, n \in \mathbb{Z} \ge 1 and 0 < z < 1 \in \mathbb{Q}. These series are related to the Riemann zeta function, the Dirichlet Eta function, and the Dirichlet Beta function. Additionally, the thread explores the Polygamma functions, the Legendre Chi function, and Dirichlet L-series related to characters \chi_1 and \chi_2.
  • #1
DreamWeaver
303
0
This thread is dedicated to the study of Log-Trig series of the form:
\(\displaystyle \mathscr{S}_{(m, n)} (z) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \sin 2\pi k z\)\(\displaystyle \mathscr{C}_{(m, n)} (z) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \cos 2\pi k z\)Where \(\displaystyle m, n \in \mathbb{Z} \ge 1\), and \(\displaystyle 0 < z < 1 \in \mathbb{Q}\).This is NOT a tutorial, so by all means DO chime in, if it tickles yer fancy... :D
 
Physics news on Phys.org
  • #2
A few preliminaries... I'll finish off the rest tomorrow... (Headbang)
\(\displaystyle \zeta(x) = \sum_{k=1}^{\infty}\frac{1}{k^x} \, \Rightarrow \, \zeta^{(m)}(x) = \frac{d^m}{dx^m} \, \sum_{k=1}^{\infty}\frac{1}{k^x} = (-1)^m\, \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^x}\)
\(\displaystyle \eta (x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^x} = \left(1-2^{1-x}\right)\, \zeta(x) = \)\(\displaystyle \sum_{k=0}^{\infty} \frac{1}{(2k+1)^x} - \sum_{k=0}^{\infty} \frac{1}{(2k+2)^x} \Rightarrow\)\(\displaystyle \eta^{(m)}(x) = (-1)^m \, \sum_{k=1}^{\infty} \frac{(-1)^{k+1}(\log k)}{k^x} \equiv \)\(\displaystyle (-1)^m \sum_{k=0}^{\infty}\Bigg\{ \frac{\log^m (2k+1)}{(2k+1)^x} - \frac{\log^m (2k+2)}{(2k+2)^x} \Bigg\}\)Furthermore,\(\displaystyle \eta^{(m)}(x) = \frac{d^m}{dx^m} \, \Bigg\{ \zeta(x)- 2^{\,1-x}\, \zeta(x) \Bigg\}=\)\(\displaystyle \zeta^{(m)}(x) - \sum_{j=0}^{m} 2^{\,1-x} \binom{m}{j} (-\log 2)^{m-j}\, \zeta^{(j)}(x) =\)
\(\displaystyle \left(1-2^{1-x}\right)\, \zeta^{(m)}(x) - \sum_{j=0}^{m-1} 2^{\,1-x} \binom{m}{j} (-\log
2)^{m-j}\, \zeta^{(j)}(x)\)

\(\displaystyle \beta(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^x} = \sum_{k=0}^{\infty} \Bigg\{
\frac{1}{(4k+1)^x} - \frac{1}{(4k+3)^x} \Bigg\} =\)
\(\displaystyle \sum_{k=0}^{\infty} \Bigg\{ \frac{1}{(8k+1)^x} - \frac{1}{(8k+3)^x} + \frac{1}{(8k+5)^x} -
\frac{1}{(8k+7)^x} \Bigg\}\)\(\displaystyle \beta(x) = \frac{1}{4^x} \, \Bigg\{ \zeta\left(x,\, \tfrac{1}{4} \right) - \zeta\left(x,\,
\tfrac{3}{4} \right) \Bigg\} = \)
\(\displaystyle \frac{1}{8^x} \, \Bigg\{ \zeta\left(x,\, \tfrac{1}{8} \right) - \zeta\left(x,\, \tfrac{3}{8}
\right) + \zeta\left(x,\, \tfrac{5}{8} \right) - \zeta\left(x,\, \tfrac{7}{8} \right)
\Bigg\}\)
 
Last edited:
  • #3
A few more expressions and relations for the Dirichlet Beta function, \(\displaystyle \beta(x)\):
\(\displaystyle \beta^{(m)}(x) = (-1)^m\, \sum_{k=0}^{\infty} \frac{(-1)^k\log^m(2k+1)}{(2k+1)^x} = \)
\(\displaystyle (-1)^m\, \sum_{k=0}^{\infty} \Bigg\{
\frac{\log^m(4k+1)}{(4k+1)^x} - \frac{\log^m(4k+3)}{(4k+3)^x} \Bigg\} =\)
\(\displaystyle (-1)^m\, \sum_{k=0}^{\infty} \Bigg\{ \frac{\log^m(8k+1)}{(8k+1)^x} - \frac{\log^m(8k+3)}{(8k+3)^x} - \frac{\log^m(8k+5)}{(8k+5)^x} -
\frac{\log^m(8k+7)}{(8k+7)^x} \Bigg\}\)
\(\displaystyle \beta^{(m)}(x) = \frac{(-1)^m}{4^x}\, \sum_{j=0}^m(-1)^j\binom{m}{j}\, (2\log 2)^{m-j} \, \Bigg\{ \zeta^{(j)} \left(x,\, \tfrac{1}{4} \right) - \zeta^{(j)} \left(x,\,
\tfrac{3}{4} \right) \Bigg\} = \)
\(\displaystyle \frac{(-1)^m}{8^x} \, \sum_{j=0}^m(-1)^j\binom{m}{j}\, (3\log 2)^{m-j}\, \Bigg\{ \zeta^{(j)}\left(x,\, \tfrac{1}{8} \right) - \zeta^{(j)}\left(x,\, \tfrac{3}{8}
\right) + \zeta^{(j)}\left(x,\, \tfrac{5}{8} \right) - \zeta^{(j)}\left(x,\, \tfrac{7}{8} \right)
\Bigg\}\)

The Polygamma functions:\(\displaystyle \psi_0(z) = -\gamma +\sum_{k=0}^{\infty} \Bigg\{ \frac{1}{k+1}-\frac{1}{k+z} \Bigg\}\)\(\displaystyle \psi_{m \ge 1}(z) = (-1)^{m+1}m! \, \sum_{k=0}^{\infty}\frac{1}{(k+z)^{m+1}}\)\(\displaystyle \psi_{n \ge 0}(z) + (-1)^{n+1}\, \psi_{n \ge 0}(1-z) = \frac{d^n}{dz^n}\, \pi\cot \pi z\)\(\displaystyle \psi_{m \ge 1}(1) = (-1)^{m+1}m! \, \zeta(m+1) \)
For \(\displaystyle m \in \mathbb{Z} \ge 1\), we can write the Dirichlet Beta function as:\(\displaystyle \beta(m) = \frac{(-1)^m}{4^m(m-1)! }\, \Bigg\{ \psi_{m-1}\left( \tfrac{1}{4} \right) - \psi_{m-1}\left( \tfrac{3}{4} \right) \Bigg\}=\)\(\displaystyle \frac{(-1)^m}{8^m(m-1)! }\, \Bigg\{ \psi_{m-1}\left( \tfrac{1}{8} \right) - \psi_{m-1}\left( \tfrac{3}{8} \right) + \psi_{m-1}\left( \tfrac{5}{8} \right) - \psi_{m-1}\left( \tfrac{7}{8}\right)\Bigg\} \)

The Legendre Chi function:\(\displaystyle \chi(x) = \sum_{k=0}^{\infty}\frac{1}{(2k+1)^x} = \Bigg( 1-2^{\, -x}\Bigg)\, \zeta(x) \Rightarrow\)\(\displaystyle \chi^{(m)}(x) = (-1)^m\, \sum_{k=0}^{\infty}\frac{\log^m(2k+1)}{(2k+1)^x}=\)\(\displaystyle \zeta^{(m)}(x) - 2^{\, -x}\, \sum_{j=0}^m\binom{m}{j} (-\log 2)^{m-j} \zeta^{(j)}(x)\)

Nearly done wiv teh prepwork... (Heidy)
 
Last edited:
  • #4
For the sake of brevity later on, I will occasionally make use of the following Dirichlet L-series, where \(\displaystyle \chi_1\) and \(\displaystyle \chi_2\) are characters on \(\displaystyle \mathbb{Z}/8\mathbb{Z}\) defined by:\(\displaystyle \chi_1(2k) = \chi_2(2k) \equiv 0\)\(\displaystyle \chi_1(k) =
\begin{cases}
\, 1, & \text{if }k = 1, 3, 9, 11, \, \cdots \, \\
-1, & \text{if }k = 5, 7, 13, 15, \, \cdots \,
\end{cases}\)\(\displaystyle \chi_2(k) =
\begin{cases}
\, 1, & \text{if }k = 1, 7, 9, 15, \, \cdots \, \\
-1, & \text{if }k = 3, 5, 11, 13, \, \cdots \,
\end{cases}\)

In terms of the characters \(\displaystyle \chi_1\) and \(\displaystyle \chi_2\) we define the following Dirichlet L-series:
\(\displaystyle L(s, \chi_1) = \sum_{k=0}^{\infty}\frac{\chi_1(k)}{k^s} = 1+\frac{1}{3^s}-\frac{1}{5^s}-\frac{1}{7^s}+ \, \cdots \)
\(\displaystyle L(s, \chi_2) = \sum_{k=0}^{\infty}\frac{\chi_2(k)}{k^s} = 1-\frac{1}{3^s}-\frac{1}{5^s}+\frac{1}{7^s}+ \, \cdots \)

\(\displaystyle L^{(m)}(s, \chi_1) = (-1)^m\,\sum_{k=0}^{\infty}\frac{\chi_1(k)\, (\log k)^m}{k^s} = \)\(\displaystyle (-1)^m\, \sum_{k=0}^{\infty} \Bigg\{
\frac{\log^m(8k+1)}{(8k+1)^s}+
\frac{\log^m(8k+3)}{(8k+3)^s}-\frac{\log^m(8k+5)}{(8k+5)^s}- \frac{\log^m(8k+7)}{(8k+7)^s}+ \, \cdots \Bigg\}\)
\(\displaystyle L^{(m)}(s, \chi_2) = (-1)^m\,\sum_{k=0}^{\infty}\frac{\chi_2(k)\, (\log k)^m}{k^s} = \)\(\displaystyle (-1)^m\, \sum_{k=0}^{\infty} \Bigg\{
\frac{\log^m(8k+1)}{(8k+1)^s}-\frac{\log^m(8k+3)}{(8k+3)^s}-\frac{\log^m(8k+5)}{(8k+5)^s}+ \frac{\log^m(8k+7)}{(8k+7)^s}+ \, \cdots \Bigg\}\)
 
Last edited:
  • #5
Relations between the Dirichlet L-series, the Dirichlet Beta function, and Hurwitz Zeta function:
\(\displaystyle \beta(x) = \sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^x} = 1-\frac{1}{3^x}+\frac{1}{5^x}-\frac{1}{7^x}+ \, \cdots \)\(\displaystyle L(x, \chi_1) = \sum_{k=0}^{\infty}\frac{\chi_1(k)}{k^x} = 1+\frac{1}{3^x}-\frac{1}{5^x}-\frac{1}{7^x}+ \, \cdots \)\(\displaystyle L(x, \chi_1) =\beta(x) - 2\, \sum_{k=0}^{\infty}\frac{1}{(8k+3)^x}+ 2\, \sum_{k=0}^{\infty}\frac{1}{(8k+5)^x}=\)\(\displaystyle \beta(x)- \frac{2}{8^x}\, \zeta\left(x, \tfrac{3}{8}\right) +
\frac{2}{8^x}\, \zeta\left(x, \tfrac{5}{8}\right)\)

\(\displaystyle L(x, \chi_2) = \sum_{k=0}^{\infty}\frac{\chi_2(k)}{k^x} = 1-\frac{1}{3^x}-\frac{1}{5^x}+\frac{1}{7^x}+ \, \cdots \)\(\displaystyle L(x, \chi_2) =\beta(x) + 2\, \sum_{k=0}^{\infty}\frac{1}{(8k+5)^x}- 2\, \sum_{k=0}^{\infty}\frac{1}{(8k+7)^x}=\)\(\displaystyle \beta(x)+ \frac{2}{8^x}\, \zeta\left(x, \tfrac{5}{8}\right) -
\frac{2}{8^x}\, \zeta\left(x, \tfrac{7}{8}\right)\)

The Hurwitz Zeta function:\(\displaystyle \zeta(x,a) = \sum_{k=0}^{\infty}\frac{1}{(k+a)^x} \Rightarrow\)\(\displaystyle \zeta^{(m)} (x,a)= \frac{d^m}{dx^m}\, \zeta(x,a)=(-1)^m\, \sum_{k=0}^{\infty}\frac{\log^m(k+a)}{(k+a)^x}\)
Let \(\displaystyle p, q \in \mathbb{Z} \ge 1\), and \(\displaystyle q \le p\), then
\(\displaystyle \sum_{k=0}^{\infty}\frac{\log^m(kp+q)}{(kp+q)^x}= \frac{1}{p^x}\, \sum_{k=0}^{\infty} \frac{[\log p+\log (k+q/p)]^m}{(k+q/p)^x} =\)\(\displaystyle \frac{1}{p^x}\, \sum_{j=0}^m\binom{m}{j}(\log p)^{m-j}\, \sum_{k=0}^{\infty} \frac{\log^j (k+q/p)}{(k+q/p)^x}=\)\(\displaystyle \frac{1}{p^x}\, \sum_{j=0}^m(-1)^j\binom{m}{j}(\log p)^{m-j}\, \zeta^{(j)} \left(x, \tfrac{q}{p} \right)\)

That's all the groundwork out of the way. Phew...! (Heidy)
 
  • #6
Special thanks to... Mathbalarka!For letting me know that when defining the characters \(\displaystyle \chi_1\) and \(\displaystyle \chi_2\) above, they should have been for \(\displaystyle \mathbb{Z}/8\mathbb{Z}\) - since edited - rather than \(\displaystyle \mathbb{Z}/8\)...

I was using the notation from this 'ere paper (p.9) -->

http://arxiv.org/pdf/math/0411087v1.pdfMany thanks! :D
 
  • #7
Just to recap - after all that blather about characters and zeta gubbins, we define...
\(\displaystyle \mathscr{S}_{(m, n)} (z) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \sin 2\pi k z\)\(\displaystyle \mathscr{C}_{(m, n)} (z) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \cos 2\pi k z\)Where \(\displaystyle m, n \in \mathbb{Z} \ge 1\), and \(\displaystyle 0 < z < 1 \in \mathbb{Q}\).

Since \(\displaystyle \sin \pi k\equiv 0\) for all integer \(\displaystyle k\), it's clear from the definition of \(\displaystyle \mathscr{S}_{(m, n)} (z)\) that
\(\displaystyle \mathscr{S}_{(m, n)} (1) = \mathscr{S}_{(m, n)} \left(\tfrac{1}{2}\right) \equiv 0\)Similarly, since \(\displaystyle \cos 2\pi k = 1\) and \(\displaystyle \cos \pi k = (-1)^k\) for all integer \(\displaystyle k\), we have:\(\displaystyle \mathscr{C}_{(m, n)} (1) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n} = (-1)^m\, \zeta^{(m)}(n)\)and\(\displaystyle \mathscr{C}_{(m, n)} \left(\frac{1}{2}\right) = \sum_{k=1}^{\infty}(-1)^k\frac{(\log k)^m}{k^n} = (-1)^{m+1}\, \eta^{(m)}(n)=\)\(\displaystyle (-1)^{m+1} \Bigg\{ \Bigg(1-2^{\, 1-n}\Bigg)\, \zeta^{(m)}(n) - 2^{\, 1-n}\, \sum_{j=0}^{m-1}\binom{m}{j}\, (-\log 2)^{m-j}\zeta^{(j)}(n) \Bigg\}\)
 
  • #8
Since \(\displaystyle \cos \left( \frac{4\pi}{3}\right)= \cos \left( 2\pi-\frac{2\pi}{3} \right) \equiv \cos \left( \frac{2\pi}{3} \right)=-1/2\), then when \(\displaystyle z=1/3\) we have
\(\displaystyle \mathscr{C}_{(m, n)} \left(\frac{1}{3}\right) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\, \cos \left(\frac{2\pi}{3}\right)=\)\(\displaystyle -\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{\log^m(3k+1)}{(3k+1)^n}
-\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{\log^m(3k+2)}{(3k+2)^n}\)\(\displaystyle + \sum_{k=0}^{\infty}\frac{\log^m(3k+3)}{(3k+3)^n} \equiv\)\(\displaystyle -\frac{1}{2}\, \sum_{k=0}^{\infty}\Bigg\{ \frac{\log^m(3k+1)}{(3k+1)^n}+ \frac{\log^m(3k+2)}{(3k+2)^n}+ \frac{\log^m(3k+3)}{(3k+3)^n}
\Bigg\}\)\(\displaystyle + \frac{3}{2}\, \sum_{k=0}^{\infty}\frac{\log^m(3k+3)}{(3k+3)^n} =\)\(\displaystyle -\frac{1}{2}\, \sum_{k=1}^m \frac{(\log k)^m}{k^n} + \frac{3^{\,1-n}}{2}\, \sum_{k=0}^{\infty}\frac{[\log 3+ \log(k+1)]^m}{(k+1)^n}=\)\(\displaystyle \frac{(-1)^{m+1}}{2}\,\zeta^{(m)}(n) + \frac{3^{\,1-n}}{2}\, \sum_{j=0}^{m}\binom{m}{j}\,(\log 3)^{m-j}\, \zeta^{(j)}(n)=\)\(\displaystyle \frac{ \left[(-1)^{m+1}+ 3^{\,1-n} \right] }{2}\,\zeta^{(m)}(n) + \frac{3^{\,1-n}}{2}\, \sum_{j=0}^{m-1}\binom{m}{j}\,(\log 3)^{m-j}\, \zeta^{(j)}(n)\)

---------------------------------------

\(\displaystyle \therefore \, \mathscr{C}_{(m, n)} \left(\frac{1}{3}\right)=\)\(\displaystyle \frac{ \left[(-1)^{m+1}+ 3^{\,1-n} \right] }{2}\,\zeta^{(m)}(n) + \frac{3^{\,1-n}}{2}\, \sum_{j=0}^{m-1}\binom{m}{j}\,(\log 3)^{m-j}\, \zeta^{(j)}(n)\)
 
  • #9
Due to the trigonometric nature of the functions \(\displaystyle \mathscr{C}_{(m,n)}(z)\) and \(\displaystyle \mathscr{S}_{(m,n)}(z)\), it should be possible to obtain a number of reflection and transformation formulae. This is indeed the case.

For positive integer \(\displaystyle k\), and \(\displaystyle 0 <z \le 1\), we have:\(\displaystyle \cos 2\pi k(1-z) = \cos 2\pi kz\)

\(\displaystyle \sin 2\pi k(1-z) = -\sin 2\pi kz\)
Hence \(\displaystyle \mathscr{C}_{(m,n)}(1-z)=\mathscr{C}_{(m,n)}(z)\) \(\displaystyle \mathscr{S}_{(m,n)}(1-z)=-\mathscr{S}_{(m,n)}(z)\)
Applying the first reflection formula to the previous result for \(\displaystyle z=1/3\) gives the case for \(\displaystyle z=2/3\).
---------------------------------------

\(\displaystyle \therefore \, \mathscr{C}_{(m, n)} \left(\frac{2}{3}\right)=\)\(\displaystyle \frac{ \left[(-1)^{m+1}+ 3^{\,1-n} \right] }{2}\,\zeta^{(m)}(n) + \frac{3^{\,1-n}}{2}\, \sum_{j=0}^{m-1}\binom{m}{j}\,(\log 3)^{m-j}\, \zeta^{(j)}(n)\)
 
  • #10
When considering the Sine case for \(\displaystyle z=1/3\), it's readily apparent that every third term vanishes, due to a coefficient congruous to \(\displaystyle \sin \pi k\):\(\displaystyle \mathscr{S}_{(m,n)}\left(\frac{1}{3}\right)= \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\sin\left(\frac{2\pi k}{3}\right)=\)\(\displaystyle \sin\left(\frac{2\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(3k+1)}{(3k+1)^n}
+
\sin\left(\frac{4\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(3k+2)}{(3k+2)^n}=\)\(\displaystyle \frac{\sqrt{3}}{2}\, \sum_{k=0}^{\infty} \Bigg\{
\frac{\log^m(3k+1)}{(3k+1)^n}-\frac{\log^m(3k+2)}{(3k+2)^n}
\Bigg\}=\)\(\displaystyle \frac{3^{1/2-n}}{2}\, \sum_{j=0}^m\binom{m}{j} (\log 3)^{m-j}\, \sum_{k=0}^{\infty} \Bigg\{
\frac{\log^j(k+1/3)}{(k+1/3)^n}-\frac{\log^j(k+2/3)}{(k+2/3)^n}
\Bigg\}=\)\(\displaystyle \frac{3^{1/2-n}}{2}\, \sum_{j=0}^m(-1)^j\binom{m}{j} (\log 3)^{m-j}\, \Bigg\{
\zeta^{(j)}\left(n, \tfrac{1}{3}\right)-
\zeta^{(j)}\left(n, \tfrac{2}{3}\right)
\Bigg\}\)The result for \(\displaystyle z=2/3\) is obtained from the above, and the reflection formula.
---------------------------------------
\(\displaystyle \mathscr{S}_{(m,n)}\left(\frac{1}{3}\right)=\)\(\displaystyle \frac{3^{1/2-n}}{2}\, \sum_{j=0}^m(-1)^j\binom{m}{j} (\log 3)^{m-j}\, \Bigg\{
\zeta^{(j)}\left(n, \tfrac{1}{3}\right)-
\zeta^{(j)}\left(n, \tfrac{2}{3}\right)
\Bigg\}\)\(\displaystyle \mathscr{S}_{(m,n)}\left(\frac{2}{3}\right)=\)\(\displaystyle -\frac{3^{1/2-n}}{2}\, \sum_{j=0}^m(-1)^j\binom{m}{j} (\log 3)^{m-j}\, \Bigg\{
\zeta^{(j)}\left(n, \tfrac{1}{3}\right)-
\zeta^{(j)}\left(n, \tfrac{2}{3}\right)
\Bigg\}\)
 
  • #11
For the Sine series, the case \(\displaystyle z=1/4\) can be resolved in terms of derivatives of the Dirichlet Beta function; this is a natural consequence of the fact that every term with even index k vanishes:\(\displaystyle \mathscr{S}_{(m,n)}\left(\frac{1}{4}\right)=\)\(\displaystyle \sum_{k=0}^{\infty}\frac{(\log k)^m}{k^n}\sin\left(\frac{\pi k}{2}\right) \equiv\)\(\displaystyle \sin\left(\frac{\pi}{2}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+1)}{(4k+1)^n}+
\sin\left(\pi\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+2)}{(4k+2)^n}+ \)\(\displaystyle \sin\left(\frac{3\pi}{2}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+3)}{(4k+3)^n}+
\sin\left(2\pi\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+4)}{(4k+4)^n} \equiv \)\(\displaystyle \sum_{k=0}^{\infty}\frac{\log^m(4k+1)}{(4k+1)^n} - \sum_{k=0}^{\infty}\frac{\log^m(4k+3)}{(4k+3)^n}=\)\(\displaystyle \sum_{k=0}^{\infty}(-1)^k\frac{\log^m(2k+1)}{(2k+1)^n}= \)\(\displaystyle (-1)^m\, \lim_{x\to n} \, \frac{d^m}{dx^m} \left[\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^x}\right] = \)\(\displaystyle (-1)^m\, \lim_{x\to n} \, \frac{d^m}{dx^m} \,\beta(x) = (-1)^m\beta^{(m)}(n)\)The result for \(\displaystyle z=3/4\) is obtain from this one, via the reflection formula.

---------------------------------------

\(\displaystyle \mathscr{S}_{(m,n)}\left(\frac{1}{4}\right)=(-1)^m\beta^{(m)}(n)\)

\(\displaystyle \mathscr{S}_{(m,n)}\left(\frac{3}{4}\right)=(-1)^{m+1}\beta^{(m)}(n)\)
 
  • #12
Setting \(\displaystyle z=1/4\) in the Cosine series gives:\(\displaystyle \mathscr{C}_{(m,n)}\left(\frac{1}
{4}\right) = \sum_{k=1}^{\infty}\frac{(\log k)^m}{k^n}\cos\left(\frac{\pi k}{2}\right) \equiv\)\(\displaystyle \cos\left(\frac{\pi}{2}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+1)}{(4k+1)^n}+
\cos\left(\pi\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+2)}{(4k+2)^n}+\)\(\displaystyle \cos\left(\frac{3\pi}{2}\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+3)}{(4k+3)^n}+
\cos\left(2\pi\right)\, \sum_{k=0}^{\infty}\frac{\log^m(4k+4)}{(4k+4)^n}=\)\(\displaystyle -\, \sum_{k=0}^{\infty}\frac{\log^m(4k+2)}{(4k+2)^n}+
\, \sum_{k=0}^{\infty}\frac{\log^m(4k+4)}{(4k+4)^n}=\)\(\displaystyle (-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \sum_{k=0}^{\infty} \Bigg\{ \frac{1}{(4k+2)^x}-\frac{1}{(4k+4)^x} \Bigg\}=\)\(\displaystyle (-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \frac{1}{2^x}\, \Bigg\{ \sum_{k=0}^{\infty} \frac{1}{(2k+1)^x}-\sum_{k=0}^{\infty} \frac{1}{(2k+2)^x} \Bigg\}=\)\(\displaystyle (-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \frac{1}{2^x}\, \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^x}=\)\(\displaystyle (-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \frac{\eta(x)}{2^x}=\)\(\displaystyle (-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, \frac{1}{2^x}\left(1-\frac{1}{2^{\,x-1}}\right)\, \zeta(x)=\)\(\displaystyle (-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, 2^{-x}\, \zeta(x) - (-1)^{m+1}\, \lim_{x \to n}\, \frac{d^m}{dx^m}\, 2^{-(2x-1)}\, \zeta(x)=\)\(\displaystyle (-1)^{m+1}\, \lim_{x \to n}\, 2^{-x} \, \sum_{j=0}^m(-1)^{m-j}\binom{m}{j}(\log 2)^{m-j}\, \zeta^{(j)}(x)\)\(\displaystyle -(-1)^{m+1}\, \lim_{x \to n}\, 2^{-(2x-1)} \, \sum_{j=0}^m(-1)^{m-j}2^{m-j}\binom{m}{j}(\log 2)^{m-j}\, \zeta^{(j)}(x)=\)
\(\displaystyle (-1)^{m+1}\, 2^{-n} \, \sum_{j=0}^m(-1)^{m-j}\binom{m}{j}(\log 2)^{m-j}\, \zeta^{(j)}(n)\)\(\displaystyle -(-1)^{m+1}\, 2^{-(2n-1)} \, \sum_{j=0}^m(-1)^{m-j}2^{m-j}\binom{m}{j}(\log 2)^{m-j}\, \zeta^{(j)}(n)=\)\(\displaystyle \sum_{j=0}^m(-1)^{j+1}\binom{m}{j}\left(\frac{2^{n-1}-2^{m-j}}{2^{2n-1}}\right)\, (\log 2)^{m-j}\, \zeta^{(j)}(n)\)

---------------------------------------

\(\displaystyle \mathscr{C}_{(m,n)}\left(\frac{1}
{4}\right)= \sum_{j=0}^m(-1)^{j+1}\binom{m}{j}\left(\frac{2^{n-1}-2^{m-j}}{2^{2n-1}}\right)\, (\log 2)^{m-j}\, \zeta^{(j)}(n)\)\(\displaystyle \mathscr{C}_{(m,n)}\left(\frac{3}
{4}\right)= \sum_{j=0}^m(-1)^{j+1}\binom{m}{j}\left(\frac{2^{n-1}-2^{m-j}}{2^{2n-1}}\right)\, (\log 2)^{m-j}\, \zeta^{(j)}(n)\)
 

FAQ: Generalized Log-Trig series related to the Hurwitz Zeta

What is the Hurwitz Zeta function?

The Hurwitz Zeta function, denoted by ζ(s, a), is a mathematical function that extends the Riemann Zeta function to the complex plane. It is defined as the infinite sum: ζ(s, a) = ∑n=0∞ (n+a)-s, where s is a complex number and a is a positive real number.

What is a generalized log-trig series?

A generalized log-trig series, also known as a generalized log-sine series, is a mathematical series that combines logarithmic and trigonometric functions. It is defined as the infinite sum: ∑n=0∞ an logn(x) sin(nx), where an are coefficients and x is a variable.

How are generalized log-trig series related to the Hurwitz Zeta function?

The generalized log-trig series and the Hurwitz Zeta function are related through the identity: ζ(s, a) = 2sπ-sn=1∞ an Γ(s+n) sin(πa) cos(nπa), where Γ(s) is the Gamma function. This allows for the evaluation of the Hurwitz Zeta function using generalized log-trig series.

What are some applications of the generalized log-trig series related to the Hurwitz Zeta function?

The generalized log-trig series related to the Hurwitz Zeta function has applications in various fields such as number theory, physics, and engineering. It has been used in the study of prime numbers, the Riemann hypothesis, statistical mechanics, and in the calculation of electromagnetic fields.

Are there any open problems or current research related to the generalized log-trig series and Hurwitz Zeta function?

Yes, there are still open problems and ongoing research related to the generalized log-trig series and Hurwitz Zeta function. Some current areas of research include finding new identities and properties of the series, extending its applicability to other mathematical functions, and exploring its connections to other areas of mathematics such as modular forms and special functions.

Back
Top