- #1
ramsey2879
- 841
- 3
I have a conjecture that the equation X^2 - 2Y^2 = P has solutions in odd integers if P is a prime of the form 8*N+1. I know of a paper that requires one to find Q such that Q^2 = 2 mod P inorder to solve these equations using continued fractions. To get to first base in proving my conjecture, is there a proof that 2 is a quadratic residue of P where P is a prime of the form 8*N+1?