- #36
- 24,488
- 15,037
Only two vectors can be orthogonal or non-orthogonal, but not a single vector. A single function (which is just a representation of the vector in the position representation) can also consequently not be orthogonal or non-orthogonal.
The functions
$$u_k(x)\exp(\mathrm{i} k x)/\sqrt{2 \pi},$$
where ##k \in \mathbb{Z}##, form a complete orthonormal set, since
$$\langle k'|k \rangle=\int_0^{2 \pi} \mathrm{d} x u_{k'}^*(x) u_k(x)=\frac{1}{2 \pi} \int_0^{2 \pi} \mathrm{d} x \exp[\mathrm{i} x(k-k')]=\delta_{k k'}.$$
The functions
$$u_k(x)\exp(\mathrm{i} k x)/\sqrt{2 \pi},$$
where ##k \in \mathbb{Z}##, form a complete orthonormal set, since
$$\langle k'|k \rangle=\int_0^{2 \pi} \mathrm{d} x u_{k'}^*(x) u_k(x)=\frac{1}{2 \pi} \int_0^{2 \pi} \mathrm{d} x \exp[\mathrm{i} x(k-k')]=\delta_{k k'}.$$