- #1
NanakiXIII
- 392
- 0
Homework Statement
Using binomial expansion, prove that
[tex]
\frac{1}{\sqrt{1 - 2 x u + u^2}} = \sum_{k} P_k(x) u^k.
[/tex]
Homework Equations
[tex]
\frac{1}{\sqrt{1 + v}} = \sum_{k} (-1)^k \frac{(2k)!}{2^{2k} (k!)^2} v^k
[/tex]
The Attempt at a Solution
I simply inserted [itex]v = u^2 - 2 x u[/itex], then expanded the [itex]v^k[/tex] to obtain the double sum
[tex]
\sum_{k} (-1)^k \frac{(2k)!}{2^{2k} (k!)^2} \sum_{n \leq k} \left( \begin{array}{c} k \\ n \end{array} \right) (-2 x)^n u^{2 k - n}.
[/tex]
Now I need to turn this into a single sum by collecting like powers of [itex]u[/itex], which is what I'm stuck at. I don't see how to go about that.