- #1
- 5,779
- 172
The geodesic equation follows from vanishing variation ##\delta S = 0## with
##S[C] = \int_C ds = \int_a^b dt \sqrt{g_{ab}\,\dot{x}^a\,\dot{x}^b}##
In many cases one uses the energy functional with ##\delta E = 0## instead:
##E[C] = \int_a^b dt \, {g_{ab}\,\dot{x}^a\,\dot{x}^b}##
Can this be generalized for other functions f with ##\delta F = 0## and
##F_f[C] = \int_a^b dt \, f\left(\sqrt{g_{ab}\,\dot{x}^a\,\dot{x}^b}\right)##
##S[C] = \int_C ds = \int_a^b dt \sqrt{g_{ab}\,\dot{x}^a\,\dot{x}^b}##
In many cases one uses the energy functional with ##\delta E = 0## instead:
##E[C] = \int_a^b dt \, {g_{ab}\,\dot{x}^a\,\dot{x}^b}##
Can this be generalized for other functions f with ##\delta F = 0## and
##F_f[C] = \int_a^b dt \, f\left(\sqrt{g_{ab}\,\dot{x}^a\,\dot{x}^b}\right)##