- #1
AleksanderPhy
- 43
- 0
Hello so if we have geodesic equation lagrange
approximation solution:
d/ds(mgμνdxν/ds)=m∂gμν∂xλdxμ/ds dxν/ds. So if we have schwarzschild metric (wich could be used to describe example sun) which is:ds2=(1-rs/r)dt2-(1-rs/r)-1dr2-r2[/SUP]-sin22. But that means that ∂gμν/∂xλ=0. So that means that first equation will equal to zero so that means that sun has no gravity effect to test particle. But according to my knowledge sun does pull things towards itself.
approximation solution:
d/ds(mgμνdxν/ds)=m∂gμν∂xλdxμ/ds dxν/ds. So if we have schwarzschild metric (wich could be used to describe example sun) which is:ds2=(1-rs/r)dt2-(1-rs/r)-1dr2-r2[/SUP]-sin22. But that means that ∂gμν/∂xλ=0. So that means that first equation will equal to zero so that means that sun has no gravity effect to test particle. But according to my knowledge sun does pull things towards itself.