A Geodesic Expansion: Finding the $\theta_{\pm}$ Factor

  • A
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Expansion Geodesic
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
1625163149807.png


\begin{align*}
\mathrm{\mathbf{(a)}} \quad U_{\pm} \cdot U_{\pm} &= \dfrac{1}{2} (n_a n^a \pm 2 n_a m^a + m_a m^a) = \pm n_a m^a = 0 \\
U_+ \cdot U_- &= \dfrac{1}{2} (n_a n^a - m_a m^a) = \dfrac{1}{2} (-1-1) = -1 \\ \\

\mathrm{\mathbf{(b)}} \quad P^a_b &= \delta^a_b + U_{\mp}^a (U_{\pm})_b + U_{\pm}^a (U_{\mp})_b \\

&= \delta^a_b + \dfrac{1}{2} (n^a \mp m^a)(n_b \pm m_b) + \dfrac{1}{2} (n^a \pm m^a)(n_b \mp m_b) \\

&= \delta^a_b + n^a n_b - m^a m_b \\

&= h^a_b - m^a m_b \\ \\

\mathrm{\mathbf{(c)}} \quad \theta_{\pm} &= P^{ab} \nabla_a (U_{\pm})_b \\

&= \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) \nabla_a (n_b \pm m_b) \\

&= \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) (K_{ab} - n_a n^c \nabla_c n _b) \pm \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) (k_{ab} - m_a m^c \nabla_c m _b) \\

&= \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) K_{ab} - \dfrac{1}{\sqrt{2}} \underbrace{h^{ab} n_a}_{= \, 0} n^c \nabla_c n_b + \dfrac{1}{\sqrt{2}} m^b \underbrace{m^a n_a}_{= \, 0} n^c \nabla_c n_b \\

&\hspace{45pt} \pm \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) (k_{ab} - m_a m^c \nabla_c m _b) \\ \\

&= \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) K_{ab} \pm \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) (k_{ab} - m_a m^c \nabla_c m _b)
\end{align*}Why is there a factor of ##\dfrac{1}{\sqrt{2}}##, and how do you re-write the second term?
 
Last edited:
Physics news on Phys.org
robphy said:
Is the \frac{1}{\sqrt{2}} from the definition of U^a_{\pm}?
Yeah, one thing I don't understand is why the ##\dfrac{1}{\sqrt{2}}## doesn't appear in the equation ##\theta_{\pm} = (h^{ab} - m^a m^b)K_{ab} \pm k## in the question.
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...
Back
Top