MHB Geometric Progression sequence with an Arithmetic Progression grouping problem

AI Thread Summary
The discussion revolves around solving a problem involving a geometric progression sequence grouped by an arithmetic progression. The proposed solution is 2^[(n^2 + n)/2] - 1, but participants are struggling to understand how to derive this from the sum of terms in the specified range. The formula for the sum of a geometric series is introduced, leading to the conclusion that the sum should be computed from the specified indices. Clarification is sought on how to simplify the expression to match the given solution. The conversation highlights the complexity of transitioning between the two summation forms.
nicodemus1
Messages
16
Reaction score
0
Good Day,

My friends and I are stuck on solving the last part of the attached problem.

The solution is 2^[(n^2 + n)/2] - 1.

Can anyone help us with solving this?

Thanks & Regards,
Nicodemus
 
Mathematics news on Phys.org
The solution you give would be the sum of all the terms in the first n groups, not the sum of just the terms in the nth group.

Let:

$\displaystyle p<q$ where $\displaystyle p,q\in\mathbb{N}$

and then:

$\displaystyle S=2^p+2^{p+1}+2^{p+2}+\cdots+2^{q}$

$\displaystyle 2S=2^{p+1}+2^{p+2}+2^{p+3}+\cdots+2^{q}+2^{q+1}$

Subtracting the former from the latter, we find:

$\displaystyle S=2^{q+1}-2^p$

Now, let:

$\displaystyle p=\frac{n^2-n}{2},\,q=\frac{n^2+n}{2}-1$
 
Good Day,

Thank you for the reply.

However, I don't see how it simplifies to the given solution. If it does, then I would first have to divide the expression by a term, right? How do I obtain that term and division from?

Thanks & Regards,
Nicodemus
 
The given solution is for:

$\displaystyle \sum_{k=0}^{\frac{n^2+n}{2}-1}2^k$

However, you are being asked to compute:

$\displaystyle \sum_{k=\frac{n^2-n}{2}}^{\frac{n^2+n}{2}-1}2^k$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top