- #1
AN630078
- 242
- 25
- Homework Statement
- Hello, I have been revising over models and real-life situations using geometric sequences when I found he problem below. The first part was causing me some initial difficulty and I am uncertain whether the method I have implemented would be correct. Would anyone be able to advise me how to improve my workings in case I am faced with similar problems in future exercises.
£2000 is invested into an account and each year the sum is increased by 6% of the amount in the account.
Find how much will be in the account after ten years.
Find how long it will take the account to reach £5000
- Relevant Equations
- bn=2000*1.06^n-1
To find how much would be in the account after ten years, let the balance in the account at the start of year n be bn.
Then b1=2000
I believe that this a compound interest problem.
Common ratio r = 1.06
bn =2000*1.06^n−1
Thus, b10 =2000×1.06^9 = £3378.95791
The balance of the account at the start of year 10 is £3379 (to the nearest £)The balance exceeds £5000 at the start of year n if bn>5000
bn=2000*1.06^n-1
(Replace the inequality with an equation)
Solve bn=5000
2000*1.06^n-1=5000
1.06^n-1=5000/2000
1.06^n-1=5/2
If p^x=q then x=logp(q)
n-1=log1.06(5/2)
n=log1.06(5/2)+1
n=16.7252
The sequence is increasing so b16=2000*1.06^15=4793.1163<5000
and b17=2000*1.06^16=5080.70>5000
Therefore, the balance first exceeded £5000 at the beginning of year 17
Then b1=2000
I believe that this a compound interest problem.
Common ratio r = 1.06
bn =2000*1.06^n−1
Thus, b10 =2000×1.06^9 = £3378.95791
The balance of the account at the start of year 10 is £3379 (to the nearest £)The balance exceeds £5000 at the start of year n if bn>5000
bn=2000*1.06^n-1
(Replace the inequality with an equation)
Solve bn=5000
2000*1.06^n-1=5000
1.06^n-1=5000/2000
1.06^n-1=5/2
If p^x=q then x=logp(q)
n-1=log1.06(5/2)
n=log1.06(5/2)+1
n=16.7252
The sequence is increasing so b16=2000*1.06^15=4793.1163<5000
and b17=2000*1.06^16=5080.70>5000
Therefore, the balance first exceeded £5000 at the beginning of year 17