- #1
jam_27
- 48
- 0
How can I geometrically interpret this coordinate transformation (from x,y space to [itex]\check{x}[/itex],[itex]\check{y}[/itex] space)?
x = [itex]\check{x}[/itex]cos(β) - [itex]\check{y}[/itex]sin(β)
y = [itex]\frac{1}{2}[/itex]([itex]\check{x}[/itex]2 -[itex]\check{y}[/itex]2)sin(2β) -[itex]\check{x}[/itex][itex]\check{y}[/itex]cos (2β)
x = [itex]\check{x}[/itex]cos(β) - [itex]\check{y}[/itex]sin(β)
y = [itex]\frac{1}{2}[/itex]([itex]\check{x}[/itex]2 -[itex]\check{y}[/itex]2)sin(2β) -[itex]\check{x}[/itex][itex]\check{y}[/itex]cos (2β)