- #1
LCSphysicist
- 646
- 162
- Homework Statement
- .
- Relevant Equations
- .
I want to get the stress energy tensor of a scalar field using the Hilbert method (namely, ##T^{\mu v} = \frac{2}{\sqrt{-g}} \frac{\delta S}{\delta g_{\mu v}}##)
$$S = \int \frac{1}{2}(\partial_\mu \phi \partial^{\mu} \phi - m^2 \phi ^2)\sqrt{-g}d^4x$$
$$= \int \frac{1}{2}(\partial^{v} \phi \partial^{\mu} \phi g_{v \mu} - m^2 \phi ^2)\sqrt{-g}d^4x$$
$$\delta S / \delta g_{a b} =$$
$$ \int \frac{1}{2}(\partial^{a} \phi \partial^{b} \phi )\sqrt{-g} d^4x + \int \frac{1}{2}(\partial^{v} \phi \partial^{\mu} \phi g_{v \mu} - m^2 \phi ^2)\frac{\sqrt{-g} g^{a b}}{2}d^4x$$
Where i have used ##\delta \sqrt{-g} = \sqrt{-g} g^{x y} \delta g_{x y} / 2##
$$T^{a b} = \frac{1}{2}(\partial^{a} \phi \partial^{b} \phi) + \frac{1}{2}(\partial^{v} \phi g_{v \mu} \partial^{\mu} \phi- m^2 \phi ^2) g^{a b}$$
This is not what i was expecting...
$$S = \int \frac{1}{2}(\partial_\mu \phi \partial^{\mu} \phi - m^2 \phi ^2)\sqrt{-g}d^4x$$
$$= \int \frac{1}{2}(\partial^{v} \phi \partial^{\mu} \phi g_{v \mu} - m^2 \phi ^2)\sqrt{-g}d^4x$$
$$\delta S / \delta g_{a b} =$$
$$ \int \frac{1}{2}(\partial^{a} \phi \partial^{b} \phi )\sqrt{-g} d^4x + \int \frac{1}{2}(\partial^{v} \phi \partial^{\mu} \phi g_{v \mu} - m^2 \phi ^2)\frac{\sqrt{-g} g^{a b}}{2}d^4x$$
Where i have used ##\delta \sqrt{-g} = \sqrt{-g} g^{x y} \delta g_{x y} / 2##
$$T^{a b} = \frac{1}{2}(\partial^{a} \phi \partial^{b} \phi) + \frac{1}{2}(\partial^{v} \phi g_{v \mu} \partial^{\mu} \phi- m^2 \phi ^2) g^{a b}$$
This is not what i was expecting...