- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I am looking at the Gibbs Phenomenon for the function $\displaystyle{f(x)=sgn(x), x \in [-\pi, \pi]}$.
The Fourier series of this function is:
$$sgn(x) \sim s(x)=\sum_{k=1}^{\infty} \frac{4}{(2k-1) \pi} \sin{((2k-1)x)}$$
Since $f$ is odd, it's sufficient to look its behaviour at $[0, \pi]$.
$$s(x)=\frac{4}{\pi}[\sin{(x)}+\frac{\sin{(3x)}}{3}+\frac{\sin{(5x)}}{5}+ \dots]$$
$s(x)$ is even as for $x=\frac{\pi}{2}$, so it's sufficient to look at $[0, \frac{\pi}{2}]$.
$$s_{2n-1}(x)=\frac{4}{\pi}[\sin{(x)}+\frac{\sin{(3x)}}{3}+ \dots +\frac{\sin{((2n-1)x)}}{2n-1}]$$
After calculations, we have that
$$s_{2n-1}'(x)=\frac{2}{\pi} \frac{\sin{(2nx)}}{\sin{(x)}}$$
$$s_{2n-1}'(x)=0 \Rightarrow \sin{(2nx)}=0 \Rightarrow 2nx=m \pi \Rightarrow \\ x=\frac{m \pi}{2n}, m=1, \dots, 2n-1 \ \ \ \text{ : points of extrema }$$
$s_{2n-1}$ has $2n-1$ extrema at $(0, \pi]$
Going from $0$ to $\frac{\pi}{2}$ the maxima get smaller and the minima get bigger.
We can show that $\forall \delta: 0< \delta< \frac{\pi}{2}$, $s_{2n-1}(x)$ converges uniformly to $1$.Could you explain me the last two sentences?? (Wondering)
I am looking at the Gibbs Phenomenon for the function $\displaystyle{f(x)=sgn(x), x \in [-\pi, \pi]}$.
The Fourier series of this function is:
$$sgn(x) \sim s(x)=\sum_{k=1}^{\infty} \frac{4}{(2k-1) \pi} \sin{((2k-1)x)}$$
Since $f$ is odd, it's sufficient to look its behaviour at $[0, \pi]$.
$$s(x)=\frac{4}{\pi}[\sin{(x)}+\frac{\sin{(3x)}}{3}+\frac{\sin{(5x)}}{5}+ \dots]$$
$s(x)$ is even as for $x=\frac{\pi}{2}$, so it's sufficient to look at $[0, \frac{\pi}{2}]$.
$$s_{2n-1}(x)=\frac{4}{\pi}[\sin{(x)}+\frac{\sin{(3x)}}{3}+ \dots +\frac{\sin{((2n-1)x)}}{2n-1}]$$
After calculations, we have that
$$s_{2n-1}'(x)=\frac{2}{\pi} \frac{\sin{(2nx)}}{\sin{(x)}}$$
$$s_{2n-1}'(x)=0 \Rightarrow \sin{(2nx)}=0 \Rightarrow 2nx=m \pi \Rightarrow \\ x=\frac{m \pi}{2n}, m=1, \dots, 2n-1 \ \ \ \text{ : points of extrema }$$
$s_{2n-1}$ has $2n-1$ extrema at $(0, \pi]$
Going from $0$ to $\frac{\pi}{2}$ the maxima get smaller and the minima get bigger.
We can show that $\forall \delta: 0< \delta< \frac{\pi}{2}$, $s_{2n-1}(x)$ converges uniformly to $1$.Could you explain me the last two sentences?? (Wondering)