- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey! :giggle:
We have the following linear maps \begin{align*}\phi_1:\mathbb{R}^2\rightarrow \mathbb{R}, \ \begin{pmatrix}x\\ y\end{pmatrix} \mapsto \begin{pmatrix}x+y\\ x-y\end{pmatrix} \\ \phi_2:\mathbb{R}^2\rightarrow \mathbb{R}, \ \begin{pmatrix}x\\ y\end{pmatrix} \mapsto \begin{pmatrix}-y\\ x\end{pmatrix} \\ \phi_3:\mathbb{R}^2\rightarrow \mathbb{R}, \ \begin{pmatrix}x\\ y\end{pmatrix} \mapsto \begin{pmatrix}y\\ 0\end{pmatrix} \end{align*}
1. Give (if possible) for each $i\in \{1,2,3\}$ a Basis $B_i$ of $\mathbb{R}^2$ such that $M_{B_i}(\phi_i)$ an upper triangular matrix.
2. Give (if possible) for each $i\in \{1,2,3\}$ a Basis $B_i$ of $\mathbb{R}^2$ such that $M_{B_i}(\phi_i)$ an diagonal matrix.
I have done the following:
Let $\mathcal{B}_i=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}x_1\\ y_1 \end{pmatrix}$ and $b_2=\begin{pmatrix}x_2\\ y_2 \end{pmatrix}$.
For question 1 :
- It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)=\left (\phi_1(b_1)\mid \phi_1(b_2)\right )=\left (\phi_1\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_1\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}x_1+y_1 & x_2+y_2 \\ x_1-y_1 & x_2-y_2\end{pmatrix}\end{equation*}
So that it is an upper triangular matrix, it must be $x_1-y_1=0$. Then we have that $x_1=y_1$.
Then we have for example such a basis $\mathcal{B}_1=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}1\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 0 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)=\begin{pmatrix}2 & 1 \\ 0 & 1\end{pmatrix}\end{equation*} is an upper triangular matrix. - It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_2}(\phi_2)=\left (\phi_2(b_1)\mid \phi_2(b_2)\right )=\left (\phi_2\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_2\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}-y_1 & -y_2 \\ x_1 & x_2\end{pmatrix}\end{equation*}
So that it is an upper triangular matrix, it must be $x_1=0$. Then we have for example such a basis $\mathcal{B}_2=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}0\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 1 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_2}(\phi_2)=\begin{pmatrix}-1 & 1 \\ 0 & 1\end{pmatrix}\end{equation*} is an upper triangular matrix. - It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\left (\phi_3(b_1)\mid \phi_3(b_2)\right )=\left (\phi_3\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_3\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}y_1 & y_2 \\ 0 & 0\end{pmatrix}\end{equation*}
This is already an upper triangular matrix, so we can take an arbitrary basis, e.g. $\mathcal{B}_3=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}0\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 1 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\begin{pmatrix}-1 & 1 \\ 0 & 1\end{pmatrix}\end{equation*} is an upper triangular matrix.
For question 2 :
- It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)=\left (\phi_1(b_1)\mid \phi_1(b_2)\right )=\left (\phi_1\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_1\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}x_1+y_1 & x_2+y_2 \\ x_1-y_1 & x_2-y_2\end{pmatrix}\end{equation*}
So that it is a diagonal matrix, it must be $x_1-y_1=x_2+y_2=0$, then $x_1=y_1$ and $x_2=-y_2$. Then we have for example such a basis $\mathcal{B}_1=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}1\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ -1 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)=\begin{pmatrix}2 & 0 \\ 0 & 2\end{pmatrix}\end{equation*} is a diagonal matrix. - It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_2}(\phi_2)=\left (\phi_2(b_1)\mid \phi_2(b_2)\right )=\left (\phi_2\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_2\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}-y_1 & -y_2 \\ x_1 & x_2\end{pmatrix}\end{equation*}
So that it is a diagonal matrix, it must be $x_1=y_2=0$. Then we have for example such a basis $\mathcal{B}_2=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}0\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 0 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_2}(\phi_2)=\begin{pmatrix}-1 & 0 \\ 0 & 1\end{pmatrix}\end{equation*} is a diagonal matrix. It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\left (\phi_3(b_1)\mid \phi_3(b_2)\right )=\left (\phi_3\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_3\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}y_1 & y_2 \\ 0 & 0\end{pmatrix}\end{equation*}
So that it is a diagonal matrix, it must be $y_2=0$. Then we have for example such a basis $\mathcal{B}_3=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}0\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 0 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}\end{equation*} is a diagonal matrix. Is everything correct? :unsure:
We have the following linear maps \begin{align*}\phi_1:\mathbb{R}^2\rightarrow \mathbb{R}, \ \begin{pmatrix}x\\ y\end{pmatrix} \mapsto \begin{pmatrix}x+y\\ x-y\end{pmatrix} \\ \phi_2:\mathbb{R}^2\rightarrow \mathbb{R}, \ \begin{pmatrix}x\\ y\end{pmatrix} \mapsto \begin{pmatrix}-y\\ x\end{pmatrix} \\ \phi_3:\mathbb{R}^2\rightarrow \mathbb{R}, \ \begin{pmatrix}x\\ y\end{pmatrix} \mapsto \begin{pmatrix}y\\ 0\end{pmatrix} \end{align*}
1. Give (if possible) for each $i\in \{1,2,3\}$ a Basis $B_i$ of $\mathbb{R}^2$ such that $M_{B_i}(\phi_i)$ an upper triangular matrix.
2. Give (if possible) for each $i\in \{1,2,3\}$ a Basis $B_i$ of $\mathbb{R}^2$ such that $M_{B_i}(\phi_i)$ an diagonal matrix.
I have done the following:
Let $\mathcal{B}_i=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}x_1\\ y_1 \end{pmatrix}$ and $b_2=\begin{pmatrix}x_2\\ y_2 \end{pmatrix}$.
For question 1 :
- It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)=\left (\phi_1(b_1)\mid \phi_1(b_2)\right )=\left (\phi_1\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_1\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}x_1+y_1 & x_2+y_2 \\ x_1-y_1 & x_2-y_2\end{pmatrix}\end{equation*}
So that it is an upper triangular matrix, it must be $x_1-y_1=0$. Then we have that $x_1=y_1$.
Then we have for example such a basis $\mathcal{B}_1=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}1\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 0 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)=\begin{pmatrix}2 & 1 \\ 0 & 1\end{pmatrix}\end{equation*} is an upper triangular matrix. - It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_2}(\phi_2)=\left (\phi_2(b_1)\mid \phi_2(b_2)\right )=\left (\phi_2\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_2\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}-y_1 & -y_2 \\ x_1 & x_2\end{pmatrix}\end{equation*}
So that it is an upper triangular matrix, it must be $x_1=0$. Then we have for example such a basis $\mathcal{B}_2=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}0\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 1 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_2}(\phi_2)=\begin{pmatrix}-1 & 1 \\ 0 & 1\end{pmatrix}\end{equation*} is an upper triangular matrix. - It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\left (\phi_3(b_1)\mid \phi_3(b_2)\right )=\left (\phi_3\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_3\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}y_1 & y_2 \\ 0 & 0\end{pmatrix}\end{equation*}
This is already an upper triangular matrix, so we can take an arbitrary basis, e.g. $\mathcal{B}_3=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}0\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 1 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\begin{pmatrix}-1 & 1 \\ 0 & 1\end{pmatrix}\end{equation*} is an upper triangular matrix.
For question 2 :
- It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)=\left (\phi_1(b_1)\mid \phi_1(b_2)\right )=\left (\phi_1\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_1\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}x_1+y_1 & x_2+y_2 \\ x_1-y_1 & x_2-y_2\end{pmatrix}\end{equation*}
So that it is a diagonal matrix, it must be $x_1-y_1=x_2+y_2=0$, then $x_1=y_1$ and $x_2=-y_2$. Then we have for example such a basis $\mathcal{B}_1=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}1\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ -1 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_1}(\phi_1)=\begin{pmatrix}2 & 0 \\ 0 & 2\end{pmatrix}\end{equation*} is a diagonal matrix. - It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_2}(\phi_2)=\left (\phi_2(b_1)\mid \phi_2(b_2)\right )=\left (\phi_2\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_2\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}-y_1 & -y_2 \\ x_1 & x_2\end{pmatrix}\end{equation*}
So that it is a diagonal matrix, it must be $x_1=y_2=0$. Then we have for example such a basis $\mathcal{B}_2=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}0\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 0 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_2}(\phi_2)=\begin{pmatrix}-1 & 0 \\ 0 & 1\end{pmatrix}\end{equation*} is a diagonal matrix. It holds that \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\left (\phi_3(b_1)\mid \phi_3(b_2)\right )=\left (\phi_3\begin{pmatrix}x_1\\ y_1 \end{pmatrix}\mid \phi_3\begin{pmatrix}x_2\\ y_2 \end{pmatrix}\right )=\begin{pmatrix}y_1 & y_2 \\ 0 & 0\end{pmatrix}\end{equation*}
So that it is a diagonal matrix, it must be $y_2=0$. Then we have for example such a basis $\mathcal{B}_3=\{b_1, b_2\}$, with $b_1=\begin{pmatrix}0\\ 1 \end{pmatrix}$ and $b_2=\begin{pmatrix}1\\ 0 \end{pmatrix}$.
These vectors are linearly independent and the matrix \begin{equation*}\mathcal{M}_{\mathcal{B}_3}(\phi_3)=\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}\end{equation*} is a diagonal matrix. Is everything correct? :unsure: