Give a symbolic expression for submerging a metal in water

In summary, the change in reading of the scale when a piece of metal of volume V is suspended in a beaker of water with density pw is pwVmg, where pw is the density of water, V is the volume of the metal, and g is the gravitational constant. This is due to the buoyancy force experienced by the metal as it is submerged in the water.
  • #1
Anna55
20
0
In the lab you place a beaker that is half full of water (density pw) on a scale. You now use a light string to suspend a piece of metal of volume V in the water. The metal is completely submerged, and none of the water spills out of the beaker.

Give a symbolic expression for the change in reading of the scale. Express your answer in terms of the variables pw, V, and appropriate constants.

relevant equations
Fb=pVg

solution
Ww+Wm-Ww=
Wm

The metal is submerged, thus the volume of the metal is the volume of the displaced water. The metal also experience buoyancy force.
 
Physics news on Phys.org
  • #2
Anna55 said:
In the lab you place a beaker that is half full of water (density pw) on a scale. You now use a light string to suspend a piece of metal of volume V in the water. The metal is completely submerged, and none of the water spills out of the beaker.

Give a symbolic expression for the change in reading of the scale. Express your answer in terms of the variables pw, V, and appropriate constants.

relevant equations
Fb=pVg

solution
Ww+Wm-Ww=
Wm

The metal is submerged, thus the volume of the metal is the volume of the displaced water. The metal also experience buoyancy force.

Welcome to PF, Anna55! :smile:In your solution you subtract Ww.
But shouldn't that be the buoyancy Fb?
And what happened to the tensional force in the string?Let's start with the definitions of your symbols.
Can I assume that:
Ww is the weight of the water in the beaker,
Wm is the weight of the metal,
Fb is the buoyancy?

In that case I'm still missing the tensional force on the string.
Shall we call it Ft?

And to set up a system that is in equilibrium, we also need the upward force of the scale.
Shall we call that Fs?
This is the quantity that you would measure with a reading on your scale.So before the submersion, the weight of the system was Ww.
For equilibrium that means that Fs=Ww.
Can you set up the equilibrium of the forces after the submersion of the metal?
 
  • #3
Yes, the symbols are correct.

Fs+Fb+Ft=Ww

Fs+Fb+Ft-Ww=0

Fs+Fb+Ft-Ww-(Fs-Ww)=
Fs+Fb+Ft-Ww-Fs+Ww=
Fb+Ft=
pwVdg+Ft=

Is this correct? How should I continue?
 
  • #4
Hmm, this is not quite right yet, but I'm at a loss right now how to explain.Let's try to look at this another way.

Suppose the metal had exactly the same density as the water.
Then the weight of the metal would equal the buoyancy force, and the tensional force in the string would be zero.
Furthermore, the level of the water in the beaker would rise, accounting for the amount of displaced water.

What would the reading of the scale indicate in this case?
 
  • #5
Fb=Wm
pw+Vd+g=mg
pm+Vd+g=mg

pm+Vd+g
 
  • #6
Draw a free body diagram of the beaker sitting on the scale with the metal suspended by the string fully submerged in the beaker.

Write an expression for the tension in the string in terms of densities and volumes.
Write another expression for the reading the scale would have based on your free body diagram of the situation. This equation should have 3 force terms that comprise the scale reading. One of the terms would be the beaker without the metal in it.

Rearrange the equation so that you have what you seek on one side of the equation.
 
  • #7
Yes, that looks about right, although you should multiply instead of add.
So in this case (metal has equal density as the water) the added weight is ##\rho_m V_d g = \rho_w V_d g##.

Now if the metal has a higher density, the buoyancy force remains the same, the weight of the metal increases, but the difference is compensated by the tensional force in the string.
 
  • #8
Before the metal is submerged in the water.
Ft=W

Submerged metal
Fb+Ft=W
Fb+Ft-W=
(They cancel out)
Fb=
pwVdg=
pwVmg

To summarize everything. Is this correct?
 
  • #9
Anna55 said:
Before the metal is submerged in the water.
Ft=W

Assuming you meant Wm where you wrote W, this is true.
Submerged metal
Fb+Ft=W
Fb+Ft-W=
(They cancel out)

Again assuming you meant Wm where you wrote W, this is also true.
Note that Ft has a different value than before.

Fb=
pwVdg=
pwVmg

Assuming that with Vm you mean the volume of the metal, which is the same as Vd, the volume of the displaced water, this is also correct.
To summarize everything. Is this correct?

As yet, you have not summarized everything.
You did not specify the effect of the metal-on-a-string on the reading of the scale.
 
Last edited:
  • #10
Sorry for not writing what the variables stand for in the beginning.
Yes, Wm is the weight of the metal.
Yes, Vm is the volume of the metal.

The change in reading of the scale will be pwVmg.
 
  • #11
Okay! :)
 
  • #12
Thanks for all the help I have gotten! :) I really appreciate it. :)
 

Related to Give a symbolic expression for submerging a metal in water

1. What does it mean to submerge a metal in water?

Submerging a metal in water refers to placing the metal in a body of water, fully covering it with water.

2. Why would someone submerge a metal in water?

Submerging a metal in water can be done for various reasons, such as conducting experiments to observe how the metal reacts to water or to clean and remove impurities from the metal's surface.

3. What happens when a metal is submerged in water?

When a metal is submerged in water, it is exposed to the water's properties, such as its temperature and chemical composition. Depending on the type of metal and the water, the metal may react in different ways, such as rusting or forming a protective layer.

4. What is the symbolic expression for submerging a metal in water?

The symbolic expression for submerging a metal in water is M + H2O → M+ + OH-, where M represents the metal and H2O represents water.

5. Are there any safety precautions to consider when submerging a metal in water?

Yes, it is important to consider the properties of both the metal and the water before submerging a metal. Some metals may react violently with water, producing flammable or toxic gases. It is also important to wear proper protective gear and handle the metal carefully to avoid any accidents.

Similar threads

  • Introductory Physics Homework Help
Replies
23
Views
4K
  • Introductory Physics Homework Help
Replies
4
Views
2K
  • Introductory Physics Homework Help
Replies
7
Views
2K
  • Introductory Physics Homework Help
Replies
5
Views
10K
  • Introductory Physics Homework Help
2
Replies
50
Views
6K
  • Introductory Physics Homework Help
Replies
1
Views
2K
  • Introductory Physics Homework Help
Replies
22
Views
6K
  • Introductory Physics Homework Help
Replies
2
Views
2K
  • Introductory Physics Homework Help
Replies
1
Views
9K
  • Introductory Physics Homework Help
Replies
2
Views
17K
Back
Top