- #1
Math100
- 802
- 222
- Homework Statement
- Give an example to show that ## a^{k}\equiv b^{k}\pmod {n} ## and ## k\equiv j\pmod {n} ## need not imply that ## a^{j}\equiv b^{j}\pmod {n} ##.
- Relevant Equations
- None.
Disproof:
Here is a counterexample:
Let ## a=2, b=3, k=2, j=7 ## and ## n=5 ##.
Then ## 2^{2}\equiv 3^{2}\pmod {5} ## and ## 2\equiv 7\pmod {5} ##.
But note that ## 2^{7}\not\equiv 3^{7}\pmod {5} ##.
Thus ## a^{j}\not\equiv b^{j}\pmod {n} ##.
Therefore, ## a^{k}\equiv b^{k}\pmod {n} ## and ## k\equiv j\pmod {n} ## does not imply that ## a^{j}\equiv b^{j}\pmod {n} ##.
Here is a counterexample:
Let ## a=2, b=3, k=2, j=7 ## and ## n=5 ##.
Then ## 2^{2}\equiv 3^{2}\pmod {5} ## and ## 2\equiv 7\pmod {5} ##.
But note that ## 2^{7}\not\equiv 3^{7}\pmod {5} ##.
Thus ## a^{j}\not\equiv b^{j}\pmod {n} ##.
Therefore, ## a^{k}\equiv b^{k}\pmod {n} ## and ## k\equiv j\pmod {n} ## does not imply that ## a^{j}\equiv b^{j}\pmod {n} ##.