- #1
Paul Mackenzie
- 16
- 0
I found the following relationship concerning goldbach's conjecture; viz that every even number is the sum of two primes.
If goldbach's conjecture is true then the following must hold for all 2N
[itex]\sum[/itex][itex]^{2N-1}_{l=0}[/itex] [itex]([/itex] [itex]\sum[/itex][itex]^{p < 2N-1}_{ p odd primes=3}[/itex] cos (2πpl/2N) ][itex])[/itex]2 > [itex]\sum[/itex][itex]^{2N-1}_{l=0}[/itex] [itex]([/itex] [itex]\sum[/itex][itex]^{p < 2N-1}_{ p odd primes=3}[/itex] sin (2πpl/2N) ][itex])[/itex]2
Alternatively if goldbach's conjecture is false for some 2N then the following must hold true for that 2N
[itex]\sum[/itex][itex]^{2N-1}_{l=0}[/itex] [itex]([/itex] [itex]\sum[/itex][itex]^{p < 2N-1}_{ p odd primes=3}[/itex] cos (2πpl/2N) ][itex])[/itex]2 = [itex]\sum[/itex][itex]^{2N-1}_{l=0}[/itex] [itex]([/itex] [itex]\sum[/itex][itex]^{p < 2N-1}_{ p odd primes=3}[/itex] sin (2πpl/2N) ][itex])[/itex]2
Unfortunately without some further knowledge concerning the distribution of primes I don't
think you can take this further.
Regards
If goldbach's conjecture is true then the following must hold for all 2N
[itex]\sum[/itex][itex]^{2N-1}_{l=0}[/itex] [itex]([/itex] [itex]\sum[/itex][itex]^{p < 2N-1}_{ p odd primes=3}[/itex] cos (2πpl/2N) ][itex])[/itex]2 > [itex]\sum[/itex][itex]^{2N-1}_{l=0}[/itex] [itex]([/itex] [itex]\sum[/itex][itex]^{p < 2N-1}_{ p odd primes=3}[/itex] sin (2πpl/2N) ][itex])[/itex]2
Alternatively if goldbach's conjecture is false for some 2N then the following must hold true for that 2N
[itex]\sum[/itex][itex]^{2N-1}_{l=0}[/itex] [itex]([/itex] [itex]\sum[/itex][itex]^{p < 2N-1}_{ p odd primes=3}[/itex] cos (2πpl/2N) ][itex])[/itex]2 = [itex]\sum[/itex][itex]^{2N-1}_{l=0}[/itex] [itex]([/itex] [itex]\sum[/itex][itex]^{p < 2N-1}_{ p odd primes=3}[/itex] sin (2πpl/2N) ][itex])[/itex]2
Unfortunately without some further knowledge concerning the distribution of primes I don't
think you can take this further.
Regards