- #1
- 893
- 483
Note: My GR is very cursory and rusty. The probability that I say something bogus in stating my question is very high. Thanks for your help in advance!
I have a dumb question. I'm only casually familiar with GR, and I have a hard time telling if quantities should be covariant or contravariant. Can I tell just by looking at the units? For example, I remember 4-velocity and 4-momentum are contravariant and both have units that include meters in the numerator (in the convention where (##x^0 = ct##). I remember that the 4-gradient ##\partial_{\mu}## is a covariant quantity and its units have meters in the denominator. Can I get away with using this trend as a mnemonic or will I get into trouble? If no, can you give counter-examples?
I know covariant vectors can be transformed into contravariant vectors via the metric, but when I'm doing a problem I need to know whether I should write ##X_{\mu} = (A,B,C,D)## or ##X_{\mu} = (-A,B,C,D)## given that I know the values of the components A,B,C,D. For instance, I know that I can write 4-momentum as a covariant vector ##P_{\mu} = \eta_{\mu \nu} P^{\nu}##, however when I'm doing a problem I have to know that P is naturally contravariant (in other words, ##P^{\mu} = (E/c, p_x, p_y, p_z)## and ##P_{\mu} = (-E/c, p_x, p_y, p_z)##, and not the other way around). Just to make sure, I'm not misunderstanding this, right?
Thanks for bearing with me, all!
I have a dumb question. I'm only casually familiar with GR, and I have a hard time telling if quantities should be covariant or contravariant. Can I tell just by looking at the units? For example, I remember 4-velocity and 4-momentum are contravariant and both have units that include meters in the numerator (in the convention where (##x^0 = ct##). I remember that the 4-gradient ##\partial_{\mu}## is a covariant quantity and its units have meters in the denominator. Can I get away with using this trend as a mnemonic or will I get into trouble? If no, can you give counter-examples?
I know covariant vectors can be transformed into contravariant vectors via the metric, but when I'm doing a problem I need to know whether I should write ##X_{\mu} = (A,B,C,D)## or ##X_{\mu} = (-A,B,C,D)## given that I know the values of the components A,B,C,D. For instance, I know that I can write 4-momentum as a covariant vector ##P_{\mu} = \eta_{\mu \nu} P^{\nu}##, however when I'm doing a problem I have to know that P is naturally contravariant (in other words, ##P^{\mu} = (E/c, p_x, p_y, p_z)## and ##P_{\mu} = (-E/c, p_x, p_y, p_z)##, and not the other way around). Just to make sure, I'm not misunderstanding this, right?
Thanks for bearing with me, all!