- #1
cwill53
- 220
- 40
- TL;DR Summary
- Prove that ##\nabla_1U(\mathbf{r}_1- \mathbf{r}_2 )=-\nabla_2U(\mathbf{r}_1- \mathbf{r}_2 )##
In physics there is a notation ##\nabla_i U## to refer to the gradient of the scalar function ##U## with respect to the coordinates of the ##i##-th particle, or whatever the case may be.
A question asks me to prove that
$$\nabla_1U(\mathbf{r}_1- \mathbf{r}_2 )=-\nabla_2U(\mathbf{r}_1- \mathbf{r}_2 )$$
How do you actually extend this idea to ##\mathbb{R}^n## though? I'm not sure if everything I have written below makes sense or is correct, I'm hoping to get some clarification. The weakness is in my mathematics.
Suppose I have ##X## be an open set in ##(\mathbb{R}^n )^m## and ##f:X\rightarrow \mathbb{R}## a scalar valued function; and let ##A=\left \{ \mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_m \right \}\subseteq X##.
Then
$$\nabla f= \begin{bmatrix}
\frac{\partial f}{\partial x _{1_{1}}}& \frac{\partial f}{\partial x _{2_{1}}} &\cdots & \frac{\partial f}{\partial x _{n_{m}}}
\end{bmatrix}^T \in (\mathbb{R}^n )^m $$
$$\nabla_k f= \begin{bmatrix}
\frac{\partial f}{\partial x _{1_{k}}}& \frac{\partial f}{\partial x _{2_{k}}} &\cdots & \frac{\partial f}{\partial x _{n_{k}}}
\end{bmatrix}^T \in \mathbb{R}^n $$
where the subscript ##k## denotes that the derivatives are taken with respect to the $n$ coordinates of the ##k##-th element of the indexed set ##A=\left \{ \mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_m \right \}\subseteq X##. Let ##\mathbf{r}_i, \mathbf{r}_j \in A##, and let
$$
\mathbf{r}_i= \begin{bmatrix}
x_{1_{i}} & x_{2_{i}} & \cdots & x_{n_{i}}
\end{bmatrix}$$
$$\mathbf{r}_j= \begin{bmatrix}
x_{1_{j}} & x_{2_{j}} & \cdots & x_{n_{j}}
\end{bmatrix}
$$
and let ##\mathbf{x}= \mathbf{r}_i- \mathbf{r}_j##.
My questions are:
1. **Is it true that ##\nabla_k f \in \mathbb{R}^n## ?**
2. **Given the above, how should ##\nabla _i f(\mathbf{x})## be written? Can someone give explicit steps for the chain rule manipulations that need to occur?**
A question asks me to prove that
$$\nabla_1U(\mathbf{r}_1- \mathbf{r}_2 )=-\nabla_2U(\mathbf{r}_1- \mathbf{r}_2 )$$
How do you actually extend this idea to ##\mathbb{R}^n## though? I'm not sure if everything I have written below makes sense or is correct, I'm hoping to get some clarification. The weakness is in my mathematics.
Suppose I have ##X## be an open set in ##(\mathbb{R}^n )^m## and ##f:X\rightarrow \mathbb{R}## a scalar valued function; and let ##A=\left \{ \mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_m \right \}\subseteq X##.
Then
$$\nabla f= \begin{bmatrix}
\frac{\partial f}{\partial x _{1_{1}}}& \frac{\partial f}{\partial x _{2_{1}}} &\cdots & \frac{\partial f}{\partial x _{n_{m}}}
\end{bmatrix}^T \in (\mathbb{R}^n )^m $$
$$\nabla_k f= \begin{bmatrix}
\frac{\partial f}{\partial x _{1_{k}}}& \frac{\partial f}{\partial x _{2_{k}}} &\cdots & \frac{\partial f}{\partial x _{n_{k}}}
\end{bmatrix}^T \in \mathbb{R}^n $$
where the subscript ##k## denotes that the derivatives are taken with respect to the $n$ coordinates of the ##k##-th element of the indexed set ##A=\left \{ \mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_m \right \}\subseteq X##. Let ##\mathbf{r}_i, \mathbf{r}_j \in A##, and let
$$
\mathbf{r}_i= \begin{bmatrix}
x_{1_{i}} & x_{2_{i}} & \cdots & x_{n_{i}}
\end{bmatrix}$$
$$\mathbf{r}_j= \begin{bmatrix}
x_{1_{j}} & x_{2_{j}} & \cdots & x_{n_{j}}
\end{bmatrix}
$$
and let ##\mathbf{x}= \mathbf{r}_i- \mathbf{r}_j##.
My questions are:
1. **Is it true that ##\nabla_k f \in \mathbb{R}^n## ?**
2. **Given the above, how should ##\nabla _i f(\mathbf{x})## be written? Can someone give explicit steps for the chain rule manipulations that need to occur?**