MHB Graph of $y=\sin{x}-2$ on the domain $[0,2\pi]$

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Graph
AI Thread Summary
The discussion focuses on graphing the function $y=\sin{x}-2$ over the domain $[0,2\pi]$, emphasizing its characteristics such as period, amplitude, and vertical shift. The amplitude is 1, the vertical shift is down 2 units, and the period remains $2\pi$. Participants clarify that the graph can be derived simply by shifting the standard sine graph downward. There is some confusion regarding phase shift and period, but the overall approach remains straightforward. Understanding these concepts is crucial for effectively graphing trigonometric functions without software assistance.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Graph $y=\sin{x}-2$ on the domain $[0,2\pi]$
This is a sample math problem in preparation for the entrance exam for the USAF Academy
Even not asked I thot also the Period, Amplitude, PS and list some observations that should be know to graph without an app

1. we know that sin(0)=0 so sin(x) goes thru origin

$Y_{sin}=A\sin\left[\omega\left(x-\dfrac{\phi}{\omega} \right) \right]+B
\implies A\sin\left(\omega x-\phi \right)+B$
A=Amplitude B=Vertical Shift
T=Period= $\quad\dfrac{2\pi}{\omega}$
PS=Phase Shift $\quad\dfrac{\phi}{\omega}$
ok this get ? at times
and,,,,,
 
Last edited:
Mathematics news on Phys.org
$y = \sin{x} - 2$

just shift $y=\sin{x}$ down 2 units … why are you making it more complicated than necessary?
 
skeeter said:
$y = \sin{x} - 2$

just shift $y=\sin{x}$ down 2 units … why are you making it more complicated than necessary?
well I know this is a very simple one but I get confused on PS and T
A and VS are easy

$A\sin\left(\omega x-\phi \right)+B\implies (1)\sin\left((1) x-(0) \right)+(-2)$

$T=\dfrac{2\pi}{1}=2\pi$
$PS=\quad\dfrac{0}{1}=0$
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top