- #1
TrpnBils
- 52
- 0
I'm missing something here...
Using the equation for calculating GPE, I'm getting an odd result in an example involving a roller coaster. Assuming at the top of the hill we have 100% PE and 0% KE and the reverse to be true at the bottom, we should have 0 joules of gravitational potential energy at the bottom of the hill, right?
If that's the case, and I'm trying to figure out the mass of the car, I can run it through the formula at various heights and get the same mass the whole way from the top to the bottom, except for where I have 0 Joules GPE. At that point it seems to turn to a mass of 0 kilograms.
What am I doing wrong here, because I know that's not right! It seems that even if the energy was all dispersed elsewhere (friction, etc) that there should still be a way to get the actual mass of the car with that equation...
Using the equation for calculating GPE, I'm getting an odd result in an example involving a roller coaster. Assuming at the top of the hill we have 100% PE and 0% KE and the reverse to be true at the bottom, we should have 0 joules of gravitational potential energy at the bottom of the hill, right?
If that's the case, and I'm trying to figure out the mass of the car, I can run it through the formula at various heights and get the same mass the whole way from the top to the bottom, except for where I have 0 Joules GPE. At that point it seems to turn to a mass of 0 kilograms.
What am I doing wrong here, because I know that's not right! It seems that even if the energy was all dispersed elsewhere (friction, etc) that there should still be a way to get the actual mass of the car with that equation...