- #1
DameLight
- 24
- 0
Homework Statement
Jupiter's moon Io has active volcanoes (in fact, it is the most volcanically active body in the solar system) that eject material as high as 300 km (or even higher) above the surface. Io has a mass of 8.94 × 1022 kg and a radius of 1815 km . Ignore any variation in gravity over the 300 km range of the debris.
h = 300 km = 300 * 103 m
mIo = 8.94 × 1022 kg
rIo = 1815 km = 1815 * 103 m
How high would this material go on Earth if it were ejected with the same speed as on Io?
ME = 5.97 × 1024
rE = 6371 km = 6371 * 103 m
G = 6.67 × 10−11
Homework Equations
Ug = - (GMm)/r
Fg = (GMm)/r2
The Attempt at a Solution
Conservation of ME on Io
PE = PE + KE
- (GMm)/(r+h) = - (GMm)/r + 1/2 mv2
- (GMm)/(r+h) + - (GMm)/r = 1/2 v2
2(- (GM)/(r+h) + - (GM)/r)) = v2
v = √(2(- (GM)/(r+h) + - (GM)/r)))
v = √(2(- (6.67 × 10−11 * 8.94 × 1022)/(1815 * 103 + 300 * 103) + - ((6.67 × 10−11 * 8.94 × 1022)/1815 * 103)))
v = 2563.36 m/s
Conservation of ME on Earth
PE = PE + KE
- (GMm)/(r+h) = - (GMm)/r + 1/2 mv2
(- (GMm)/r + 1/2 mv2)/- (GMm) = (r+h)
h = (- (GMm)/r + 1/2 mv2)/- (GMm) - r
h = (- (6.67 × 10−11 * 5.97 × 1024)/6371 * 103 + 1/2 * 2563.362)/- (6.67 × 10−11 * 5.97 × 1024) - 6371 * 103
h = 6.37 * 106
Points Changed:
1. Initial PE should exist
Last edited: