- #1
olgerm
Gold Member
- 533
- 34
[Mentor Note -- LaTeX edited for readability]
I was thinking about an experiment to demonstrate gravitomagnetic effect. I did my calculations using gravitomagnetic model. It is not as accurate as general relativity, but GR should give similar predictions. I do not know if it would be possible to to this experiment in real life(are there enough accurate sensors and tough materials).
Installations consists of:
##\vec B(x, y, R, H, H_0)=
(\frac{k_G4πρω}{c^2}\int_{H_0}^{H+H_0}(\int_0^R((\frac{hπrx(\sqrt{h^4(x^2+y^2-r^2)^2+2h^2(r^2+x^2+y^2)}-(h^2+r^2+x^2+y^2))}{(x^2+y^2)\sqrt{h^4+(x^2+y^2-r^2)^2+2h^2(r^2+x^2+y^2)}})dr)dh),\frac{k_G4πρω}{c^2}\int_{H_0}^{H+H_0}(\int_0^R((\frac{hπry(\sqrt{h^4+(x^2+y^2-r^2)^2+2h^2(r^2+x^2+y^2)}-(h^2+r^2+x^2+y^2))}{(x^2+y^2)\sqrt{h^4 + (x^2+y^2-r^2)^2+2h^2(r^2+x^2+y^2)}})dr)dh),\frac{k_G4πρω}{c^2}\int_{H_0}^{H+H_0} (\int_0^R (\int_0^{2π} (\frac{(r-xCos(a) - ySin(a))r^2}{(x^2+y^2+r^2+h^2-2r(xCos(a)+ySin(a)))^{3/2}} dα)dr)dh))##
since unlike in this post cylinder is for simplicity assumed to be infinitly long:
##\vec B(x, y)=
(\frac{k_G4πρω}{c^2}\int_{-\infty}^{\infty}(\int_0^R((\frac{hπrx(\sqrt{h^4(x^2+y^2-r^2)^2+2h^2(r^2+x^2+y^2)}-(h^2+r^2+x^2+y^2))}{(x^2+y^2)\sqrt{h^4+(x^2+y^2-r^2)^2+2h^2(r^2+x^2+y^2)}})dr)dh),\frac{k_G4πρω}{c^2}\int_{-\infty}^{\infty}(\int_0^R((\frac{hπry(\sqrt{h^4+(x^2+y^2-r^2)^2+2h^2(r^2+x^2+y^2)}-(h^2+r^2+x^2+y^2))}{(x^2+y^2)\sqrt{h^4 + (x^2+y^2-r^2)^2+2h^2(r^2+x^2+y^2)}})dr)dh),\frac{k_G4πρω}{c^2}\int_{-\infty}^{\infty} (\int_0^R (\int_0^{2π} (\frac{(r-xCos(a) - ySin(a))r^2}{(x^2+y^2+r^2+h^2-2r(xCos(a)+ySin(a)))^{3/2}} dα)dr)dh))##
##\vec{F}=\vec{v}\times\vec{B}m_{photon}4##
as approximation I can calculate force as:
##\vec{F}\approx (cB_zm_{photon}4,0,0)##
acceleration of photon is:
##\vec{a}=\frac{\partial \vec{X}^2}{\partial t^2}=(\frac{F}{m_{photon}}-\frac{(\vec F.\vec v)\vec v}{m_{photon}c^2})\frac{\sqrt{c^2-v^2}}{c}##
as approximation I can calculate acceleration of photon as:
##\vec{a}\approx\frac{\partial \vec{X}^2}{\partial t^2}=\frac{F}{m_{photon}}##
speed is:
##v=\int(dt\vec{a}(t))##
change of direction of laserray is:
##\alpha=arcsin(\frac{\sqrt{v_x^2+v_z^2}}{c})##
as approximation I can calculate change of direction of laserray as:
##\alpha\approx arcsin(\frac{v_x}{c})##
by simplifying equations above I get that approximate change of direction of laserray is:
##\vec{a}\approx (cB_z4,0,0)##
##\vec{v}=\int(dt\vec{a}(t))\approx\int(dt\vec{(cB_z(\vec{x}(t))4,0,0)}(t))##
I make an approximation, that gravitomagnetic fileld on path of photon is same as in path that photon would take if it traveled straight.:
##\vec{v}=\int(dt\vec{a}(t))=\int(dt\vec{(cB_z(\vec{x}(t))4,0,0)}(t))=\int(dl\vec{(B_z(\vec{x}(t))4,0,0)}(l))##
##\alpha\approx arcsin(\frac{\int(dl\vec{(B_z(\vec{x}(t))4)}(t))}{c})=arcsin(\frac{k_G16πρω}{c^3}\int(dl\vec{(\int_{-\infty}^{\infty} (\int_0^R (\int_0^{2π} (\frac{(r-xCos(a) - ySin(a))r^2}{(x^2+y^2+r^2+h^2-2r(xCos(a)+ySin(a)))^{3/2}}dα)dr)dh))}))
=arcsin(\frac{k_G16πρω}{c^3}\int(dl\vec{(\int_{-\infty}^{\infty} (\int_0^R (\int_0^{2π} (\frac{(r-ySin(a))r^2}{(y^2+r^2+h^2-2r(ySin(a)))^{3/2}}dα)dr)dh))}))##
(##m_{photon}## is 0 . It cancels out. It is in formulas as dummy-variable))
Maybe adding some mirrors somewhere would make the experiment even better.
Are these equations correct?
Would it be possible to make such experiment?
I hope someone takes some time and writes clear arguments why such experiment would be or would not be possible or writes some ideas how to change this experiment.
I was thinking about an experiment to demonstrate gravitomagnetic effect. I did my calculations using gravitomagnetic model. It is not as accurate as general relativity, but GR should give similar predictions. I do not know if it would be possible to to this experiment in real life(are there enough accurate sensors and tough materials).
Installations consists of:
- a spinning cylinder with hole in it, that is for creating gravitomagnetic field. last one is for detecting gravitomagnetic field. axis of cylinder is parallel to coorinate-z-axis.
- laser, that sends it's ray throght the hole in cylinder.Ray is directed to z axis, and is parallel to y-axis. x-coordinate of laser location is 0.
- detector, that detect angel of the laserray. (may be something that's measures location of laserray after it has traveled a long distance)
##\vec B(x, y, R, H, H_0)=
(\frac{k_G4πρω}{c^2}\int_{H_0}^{H+H_0}(\int_0^R((\frac{hπrx(\sqrt{h^4(x^2+y^2-r^2)^2+2h^2(r^2+x^2+y^2)}-(h^2+r^2+x^2+y^2))}{(x^2+y^2)\sqrt{h^4+(x^2+y^2-r^2)^2+2h^2(r^2+x^2+y^2)}})dr)dh),\frac{k_G4πρω}{c^2}\int_{H_0}^{H+H_0}(\int_0^R((\frac{hπry(\sqrt{h^4+(x^2+y^2-r^2)^2+2h^2(r^2+x^2+y^2)}-(h^2+r^2+x^2+y^2))}{(x^2+y^2)\sqrt{h^4 + (x^2+y^2-r^2)^2+2h^2(r^2+x^2+y^2)}})dr)dh),\frac{k_G4πρω}{c^2}\int_{H_0}^{H+H_0} (\int_0^R (\int_0^{2π} (\frac{(r-xCos(a) - ySin(a))r^2}{(x^2+y^2+r^2+h^2-2r(xCos(a)+ySin(a)))^{3/2}} dα)dr)dh))##
since unlike in this post cylinder is for simplicity assumed to be infinitly long:
##\vec B(x, y)=
(\frac{k_G4πρω}{c^2}\int_{-\infty}^{\infty}(\int_0^R((\frac{hπrx(\sqrt{h^4(x^2+y^2-r^2)^2+2h^2(r^2+x^2+y^2)}-(h^2+r^2+x^2+y^2))}{(x^2+y^2)\sqrt{h^4+(x^2+y^2-r^2)^2+2h^2(r^2+x^2+y^2)}})dr)dh),\frac{k_G4πρω}{c^2}\int_{-\infty}^{\infty}(\int_0^R((\frac{hπry(\sqrt{h^4+(x^2+y^2-r^2)^2+2h^2(r^2+x^2+y^2)}-(h^2+r^2+x^2+y^2))}{(x^2+y^2)\sqrt{h^4 + (x^2+y^2-r^2)^2+2h^2(r^2+x^2+y^2)}})dr)dh),\frac{k_G4πρω}{c^2}\int_{-\infty}^{\infty} (\int_0^R (\int_0^{2π} (\frac{(r-xCos(a) - ySin(a))r^2}{(x^2+y^2+r^2+h^2-2r(xCos(a)+ySin(a)))^{3/2}} dα)dr)dh))##
- ##k_G## is gravitational constant.
- ##\rho## is density of cylinder.
- ##R## is radius of the cylinder.
##\vec{F}=\vec{v}\times\vec{B}m_{photon}4##
as approximation I can calculate force as:
##\vec{F}\approx (cB_zm_{photon}4,0,0)##
acceleration of photon is:
##\vec{a}=\frac{\partial \vec{X}^2}{\partial t^2}=(\frac{F}{m_{photon}}-\frac{(\vec F.\vec v)\vec v}{m_{photon}c^2})\frac{\sqrt{c^2-v^2}}{c}##
as approximation I can calculate acceleration of photon as:
##\vec{a}\approx\frac{\partial \vec{X}^2}{\partial t^2}=\frac{F}{m_{photon}}##
speed is:
##v=\int(dt\vec{a}(t))##
change of direction of laserray is:
##\alpha=arcsin(\frac{\sqrt{v_x^2+v_z^2}}{c})##
as approximation I can calculate change of direction of laserray as:
##\alpha\approx arcsin(\frac{v_x}{c})##
by simplifying equations above I get that approximate change of direction of laserray is:
##\vec{a}\approx (cB_z4,0,0)##
##\vec{v}=\int(dt\vec{a}(t))\approx\int(dt\vec{(cB_z(\vec{x}(t))4,0,0)}(t))##
I make an approximation, that gravitomagnetic fileld on path of photon is same as in path that photon would take if it traveled straight.:
##\vec{v}=\int(dt\vec{a}(t))=\int(dt\vec{(cB_z(\vec{x}(t))4,0,0)}(t))=\int(dl\vec{(B_z(\vec{x}(t))4,0,0)}(l))##
##\alpha\approx arcsin(\frac{\int(dl\vec{(B_z(\vec{x}(t))4)}(t))}{c})=arcsin(\frac{k_G16πρω}{c^3}\int(dl\vec{(\int_{-\infty}^{\infty} (\int_0^R (\int_0^{2π} (\frac{(r-xCos(a) - ySin(a))r^2}{(x^2+y^2+r^2+h^2-2r(xCos(a)+ySin(a)))^{3/2}}dα)dr)dh))}))
=arcsin(\frac{k_G16πρω}{c^3}\int(dl\vec{(\int_{-\infty}^{\infty} (\int_0^R (\int_0^{2π} (\frac{(r-ySin(a))r^2}{(y^2+r^2+h^2-2r(ySin(a)))^{3/2}}dα)dr)dh))}))##
(##m_{photon}## is 0 . It cancels out. It is in formulas as dummy-variable))
Maybe adding some mirrors somewhere would make the experiment even better.
Are these equations correct?
Would it be possible to make such experiment?
I hope someone takes some time and writes clear arguments why such experiment would be or would not be possible or writes some ideas how to change this experiment.
Last edited: