- #1
DDB
- 1
- 0
- TL;DR Summary
- The derivation of the graviton propagator in Horndeski theory is not clear for me.
Let ##\phi## be a scalar field and ##g_{\mu \nu} = \eta_{\mu \nu}+h_{\mu \nu}/M_p## where ##M_p## is the Planck mass (so we assume we deal with perturbations). Let ##\Lambda_2,\Lambda_3## be energy scales such that ##\Lambda_2 \gg \Lambda_3##. These are defined by ##\Lambda^2_2 = M_p H_0## and ##\Lambda_3^3 = M_p H_0^2##. The [Horndeski action](https://en.wikipedia.org/wiki/Horndeski's_theory) is:
$$S = \int d^4 x \sqrt{-g} \sum^5_{i=2} \mathcal{L}_i,$$
where
\begin{align}
\mathcal{L_2}&=\Lambda_2^4 G_2,\nonumber \\
\mathcal{L_3}&=\Lambda_2^4 G_3 [\Phi], \nonumber \\
\mathcal{L_4}&= M_p^2 G_4 R + \Lambda_2^4 G_{4,X}([\Phi]^2 - [\Phi^2]),\nonumber \\
\mathcal{L_5}&= M_p^2 G_5 G_{\mu \nu}\Phi^{\mu \nu} - \frac{1}{6}\Lambda_2^4 G_{5,X}([\Phi]^3 - 3[\Phi][\Phi^2] + 2[\Phi^3]), \nonumber
\end{align}
where ##G_2,G_3,G_4,G_5## are functions of ##\phi## and ##X = -\frac{1}{2}\nabla^\mu \phi \nabla_\mu \phi /\Lambda_2^4##, ##\Phi^{\mu}_{ \ \nu}:= \nabla^\mu \nabla_\nu \phi/\Lambda_3^3## and square brackets indicate the trace, e.g. ##[\Phi^2] = \nabla^\mu \nabla_\nu \phi \nabla^\nu \nabla_\mu \phi/\Lambda_3^6## and ##,## denote partial derivatives. Bar on top of quantities means that we evaluate the function at the background, which has ##\langle \phi \rangle = 0##.
I am trying to derive the expression for the graviton propagator in this theory but it does not work out well. My idea was to identify the Lagrangian for 2 gravitons (where ##h = h^\mu_\mu##):
\begin{align}
\mathcal{L}_{hh} &= \Lambda^4_2 \bar{G}_2\sqrt{-g} + \bar{G}_4 M_{\mathrm{pl}}^2 R \sqrt{-g}\\
&\approx \bar{G}_2 H_0^2 \Big(1+\frac{1}{2}h + \frac{1}{8}h^2 - \frac{1}{4}h_{\mu \nu}h^{\mu \nu}\Big) + \bar{G}_4 \Big(-\frac{1}{2}(\partial_\sigma h)(\partial_\mu h^{\mu \sigma}) + \frac{1}{2}(\partial_\nu h)(\partial^\nu h) + \frac{1}{2}(\partial_\nu h^{\mu \nu})(\partial^\sigma h_{\sigma \mu})+ \frac{1}{2}(\partial^\sigma h_{\sigma \nu})(\partial_\mu h^{\mu \nu}) - \frac{1}{2}(\partial_\nu h)(\partial_\mu h^{\mu \nu}) - \frac{1}{2}(\partial_\beta h^{\mu \nu})(\partial^\beta h_{\mu \nu})\Big).
\end{align}
In ordinary GR one would add the gauge fixing term ##-\bar{G}_4 (\partial_\nu h^{\mu \nu} - \frac{1}{2}\partial^\mu h)^2## so that the last term becomes ##\bar{G}_4(\frac{1}{4} (\partial_\nu h)^2 - \frac{1}{2} (\partial_\beta h^{\mu \nu})^2)##. However, in this case in the paper [arXiv:1904.05874](https://arxiv.org/abs/1904.05874) they mention that the graviton propagator ##\mathcal{P}^{\nu \beta}_{\mu \alpha}## is found from (##\delta## is the generalised Kronecker delta):
$$\frac{\bar{G}_4}{2}\mathcal{P}^{\nu \beta}_{\mu \alpha}(p) \delta^{\alpha \rho \mu^\prime}_{\beta \sigma \nu^\prime} p_\rho p^\sigma = -i \delta^{\mu^\prime}_\mu \delta^{\nu^\prime}_\nu.$$
My questions are: How do they get rid of the ##\bar{G}_2## term and what gauge fixing term has taken to arrive at this result for the definition of the propagator?
$$S = \int d^4 x \sqrt{-g} \sum^5_{i=2} \mathcal{L}_i,$$
where
\begin{align}
\mathcal{L_2}&=\Lambda_2^4 G_2,\nonumber \\
\mathcal{L_3}&=\Lambda_2^4 G_3 [\Phi], \nonumber \\
\mathcal{L_4}&= M_p^2 G_4 R + \Lambda_2^4 G_{4,X}([\Phi]^2 - [\Phi^2]),\nonumber \\
\mathcal{L_5}&= M_p^2 G_5 G_{\mu \nu}\Phi^{\mu \nu} - \frac{1}{6}\Lambda_2^4 G_{5,X}([\Phi]^3 - 3[\Phi][\Phi^2] + 2[\Phi^3]), \nonumber
\end{align}
where ##G_2,G_3,G_4,G_5## are functions of ##\phi## and ##X = -\frac{1}{2}\nabla^\mu \phi \nabla_\mu \phi /\Lambda_2^4##, ##\Phi^{\mu}_{ \ \nu}:= \nabla^\mu \nabla_\nu \phi/\Lambda_3^3## and square brackets indicate the trace, e.g. ##[\Phi^2] = \nabla^\mu \nabla_\nu \phi \nabla^\nu \nabla_\mu \phi/\Lambda_3^6## and ##,## denote partial derivatives. Bar on top of quantities means that we evaluate the function at the background, which has ##\langle \phi \rangle = 0##.
I am trying to derive the expression for the graviton propagator in this theory but it does not work out well. My idea was to identify the Lagrangian for 2 gravitons (where ##h = h^\mu_\mu##):
\begin{align}
\mathcal{L}_{hh} &= \Lambda^4_2 \bar{G}_2\sqrt{-g} + \bar{G}_4 M_{\mathrm{pl}}^2 R \sqrt{-g}\\
&\approx \bar{G}_2 H_0^2 \Big(1+\frac{1}{2}h + \frac{1}{8}h^2 - \frac{1}{4}h_{\mu \nu}h^{\mu \nu}\Big) + \bar{G}_4 \Big(-\frac{1}{2}(\partial_\sigma h)(\partial_\mu h^{\mu \sigma}) + \frac{1}{2}(\partial_\nu h)(\partial^\nu h) + \frac{1}{2}(\partial_\nu h^{\mu \nu})(\partial^\sigma h_{\sigma \mu})+ \frac{1}{2}(\partial^\sigma h_{\sigma \nu})(\partial_\mu h^{\mu \nu}) - \frac{1}{2}(\partial_\nu h)(\partial_\mu h^{\mu \nu}) - \frac{1}{2}(\partial_\beta h^{\mu \nu})(\partial^\beta h_{\mu \nu})\Big).
\end{align}
In ordinary GR one would add the gauge fixing term ##-\bar{G}_4 (\partial_\nu h^{\mu \nu} - \frac{1}{2}\partial^\mu h)^2## so that the last term becomes ##\bar{G}_4(\frac{1}{4} (\partial_\nu h)^2 - \frac{1}{2} (\partial_\beta h^{\mu \nu})^2)##. However, in this case in the paper [arXiv:1904.05874](https://arxiv.org/abs/1904.05874) they mention that the graviton propagator ##\mathcal{P}^{\nu \beta}_{\mu \alpha}## is found from (##\delta## is the generalised Kronecker delta):
$$\frac{\bar{G}_4}{2}\mathcal{P}^{\nu \beta}_{\mu \alpha}(p) \delta^{\alpha \rho \mu^\prime}_{\beta \sigma \nu^\prime} p_\rho p^\sigma = -i \delta^{\mu^\prime}_\mu \delta^{\nu^\prime}_\nu.$$
My questions are: How do they get rid of the ##\bar{G}_2## term and what gauge fixing term has taken to arrive at this result for the definition of the propagator?
Last edited by a moderator: