- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
The greatest common divisor of $a$ and $b$ can be written as a linear combination of $a$ and $b$.
Let the set $D=\{xa+yb|x,y \in Z\}$.
a) $D$ contains non-zero elements.
b) $D$ contains also positive numbers.
c) The set of positive numbers of $D$ (let $D^+$) is $ \neq \varnothing$, so it has a minimum element. Let $d$ be the minimum element of $D^+ \subset D$
Consider that $d$ is the GCD of $a$,$b$.
First of all, since $d \in D$, $\exists x_1, y_1 \in Z$ so that $d=x_1 a+ y_1 b$
Consider that each element of $D$ is a multiple of $d$ and each multiple of $d$ belongs to $D$, so let's consider that $\{ax+by|x,y \in Z\}=D=dZ$
I haven't understood why we consider at c) that $d$ is the GCD of $a$,$b$. Could you explain it to me??
The greatest common divisor of $a$ and $b$ can be written as a linear combination of $a$ and $b$.
Let the set $D=\{xa+yb|x,y \in Z\}$.
a) $D$ contains non-zero elements.
b) $D$ contains also positive numbers.
c) The set of positive numbers of $D$ (let $D^+$) is $ \neq \varnothing$, so it has a minimum element. Let $d$ be the minimum element of $D^+ \subset D$
Consider that $d$ is the GCD of $a$,$b$.
First of all, since $d \in D$, $\exists x_1, y_1 \in Z$ so that $d=x_1 a+ y_1 b$
Consider that each element of $D$ is a multiple of $d$ and each multiple of $d$ belongs to $D$, so let's consider that $\{ax+by|x,y \in Z\}=D=dZ$
I haven't understood why we consider at c) that $d$ is the GCD of $a$,$b$. Could you explain it to me??