- #1
redtree
- 329
- 13
The Green's function is defined as follows, where ##\hat{L}_{\textbf{r}}## is a differential operator:
\begin{equation}
\begin{split}
\hat{L}_{\textbf{r}} \hat{G}(\textbf{r},\textbf{r}_0)&=\delta(\textbf{r}-\textbf{r}_0)
\end{split}
\end{equation}However, I have seen the following description of the Green's function (which contradicts the above definition):
\begin{equation}
\begin{split}
\delta(\textbf{r}-\textbf{r}_0) &= \langle \textbf{r}| \textbf{r}_0 \rangle
\end{split}
\end{equation}Where ##\textbf{r}## is a 4-vector with components of 3-space ##\vec{x}## and 1-time ##t##:
\begin{equation}
\begin{split}
\textbf{r}&= [\vec{x},t]
\end{split}
\end{equation}Such that, where ##\hat{U}(t,t_0)## denotes the time evolution operator, ##\hat{U}(t,t_0)\doteq e^{-2 \pi i \omega(t-t_0)}##:
\begin{equation}
\begin{split}
\langle \textbf{r}| \textbf{r}_0 \rangle&=\langle \vec{x},t| \vec{x}_0,t_0 \rangle
\\
&=\langle \vec{x}|\hat{U}(t,t_0)| \vec{x}_0 \rangle
\\
&=\langle \vec{x}|e^{-2 \pi i \omega(t-t_0)}| \vec{x}_0 \rangle
\end{split}
\end{equation}Where the Green's function ##\hat{G}(\vec{x},t|\vec{x}_0,t_0)## is defined such that:
\begin{equation}
\begin{split}
\hat{G}(\vec{x},t|\vec{x}_0,t_0) &\doteq \langle \vec{x}|e^{-2 \pi i \omega(t-t_0)}| \vec{x}_0 \rangle
\end{split}
\end{equation}What am I missing?
\begin{equation}
\begin{split}
\hat{L}_{\textbf{r}} \hat{G}(\textbf{r},\textbf{r}_0)&=\delta(\textbf{r}-\textbf{r}_0)
\end{split}
\end{equation}However, I have seen the following description of the Green's function (which contradicts the above definition):
\begin{equation}
\begin{split}
\delta(\textbf{r}-\textbf{r}_0) &= \langle \textbf{r}| \textbf{r}_0 \rangle
\end{split}
\end{equation}Where ##\textbf{r}## is a 4-vector with components of 3-space ##\vec{x}## and 1-time ##t##:
\begin{equation}
\begin{split}
\textbf{r}&= [\vec{x},t]
\end{split}
\end{equation}Such that, where ##\hat{U}(t,t_0)## denotes the time evolution operator, ##\hat{U}(t,t_0)\doteq e^{-2 \pi i \omega(t-t_0)}##:
\begin{equation}
\begin{split}
\langle \textbf{r}| \textbf{r}_0 \rangle&=\langle \vec{x},t| \vec{x}_0,t_0 \rangle
\\
&=\langle \vec{x}|\hat{U}(t,t_0)| \vec{x}_0 \rangle
\\
&=\langle \vec{x}|e^{-2 \pi i \omega(t-t_0)}| \vec{x}_0 \rangle
\end{split}
\end{equation}Where the Green's function ##\hat{G}(\vec{x},t|\vec{x}_0,t_0)## is defined such that:
\begin{equation}
\begin{split}
\hat{G}(\vec{x},t|\vec{x}_0,t_0) &\doteq \langle \vec{x}|e^{-2 \pi i \omega(t-t_0)}| \vec{x}_0 \rangle
\end{split}
\end{equation}What am I missing?