I Green's function boundary conditions

AI Thread Summary
The discussion focuses on the application of Green's identity to derive the potential in terms of the Green's function under specific boundary conditions. It highlights the necessity for the Green's function to satisfy certain conditions for Dirichlet and Neumann boundaries to simplify the integral expression for the potential. The query raised pertains to the mathematical justification for imposing these conditions on the Green's function without introducing inconsistencies. Reference to Jackson's text is made as a source of clarification on this topic. Understanding these requirements is crucial for ensuring the validity of the potential's representation.
deuteron
Messages
64
Reaction score
14
TL;DR Summary
what is the motivation / justification behind the applied conditions on the Green's function for Dirichlet / Neumann boundary conditions
we know that, using the Green's identity ##\iiint\limits_V (\varphi \Delta\psi -\psi \Delta\varphi)\ dV =\iint_{\partial V} (\varphi \frac {\partial \psi}{\partial n}-\psi \frac {\partial\varphi}{\partial n})\ da## and substituting ##\varphi=\phi## and ##\psi=G## here, we can write the potential as:

$$\phi_{\vec r} = \iiint\limits_V \rho_{\vec r_q} G_{\vec r, \vec r_q}\ d^3r_q\ +\ \frac 1 {4\pi}\ [\iint _{\partial V} G_{\vec r, \vec r_q} \frac \partial {\partial n} \phi_{\vec r_q} - \phi_{\vec r_q} \frac{\partial G_{\vec r, \vec r_q}} {\partial n} \ da]$$

here, for the type of given boundary conditions, ( Dirichlet: ##\phi|_{\partial V}=\text{given}## or Neumann ##\frac {\partial \phi}{\partial n}|_{\partial V}=\text{given}##) we require, that the Green's function satisfies some conditions (Dirichlet: ##G|_{\partial V}=0##, Neumann: ##\frac {\partial G}{\partial n} |_{\partial V}=- \frac {4\pi}{\text{surface area of}\ \partial V}##)

I understand that these make our life easier when we substitute the Green's function into the above integral expression for ##\phi##
However, I am confused about *why* we are allowed to make these requirements on the Green's function. How are we mathematically sure that making this requirements would not cause a problem?
 
Physics news on Phys.org
I have found the answer in Jackson, section 1.10 page 18
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...

Similar threads

Back
Top