- #1
xago
- 60
- 0
Homework Statement
[PLAIN]http://img836.imageshack.us/img836/2479/stepvt.png
Homework Equations
H'(t) = [itex]\delta[/itex](t)
The Attempt at a Solution
So far I've taken the derivatives of G(x,t) with respect to xx and tt and gotten
[itex]G_{xx}[/itex](x,t) = -[itex]\frac{θ^{2}}{c}[/itex] and
[itex]G_{tt}[/itex](x,t) = [itex]θ^{2}[/itex]c
which gives [itex]θ^{2}[/itex]c - [itex]c^{2}[/itex](-[itex]\frac{θ^{2}}{c}[/itex]) = [itex]\delta[/itex](x)[itex]\delta[/itex](t)
= 2[itex]θ^{2}[/itex]c = [itex]\frac{dH(x)}{dx}[/itex][itex]\frac{dH(t)}{dt}[/itex]
where H(x), H(t) are the heaviside step functions for x and t.
I'm not sure how these are related or if I've gone about this in a completely wrong way. (Dirac functions are not my strong suit )
Last edited by a moderator: