- #1
spin_100
- 15
- 1
- TL;DR Summary
- Is there a way to tackle problems involving linear isotropic dielectric media with permittivity separated by a boundary directly using an appropriate green's function? I am studying electrodynamics from Jackson's electrodynamics and after learning about the power of using green's function to solve boundary value problems, I was wondering if there is something similar to this for dielectric media. I have shown my approach here but I am stuck at a point.
I am considering a simple problem of a sphere of isotropic dielectric media (permittivity ## \epsilon ## and Radius ##R##) placed in a uniform electric field ## E_0 ## (z-direction). The problem is from Griffiths Chapter 4, example 7.
Since, it is a linear dielectric material, ## D = \epsilon E ## Since there is a discontinuity in ## \epsilon ##
We can model ## \epsilon (r) = \epsilon \theta (R-r) + \epsilon_0 \theta (r-R)##
Taking the divergence of D and since there are no free charges. (external charges) we get $$ 0 = \epsilon(r) \nabla \cdot E + \delta (R-r) ( \epsilon_0 - \epsilon ) E \cdot r$$
Then, we get the possion's equation $$ \nabla \cdot E = - \delta (R-r) ( \epsilon_0 - \epsilon ) E \cdot r $$ After that I don't know how to proceed further. I solved for the potential using an appropriate green's function but the result I am getting is wrong.
Since, it is a linear dielectric material, ## D = \epsilon E ## Since there is a discontinuity in ## \epsilon ##
We can model ## \epsilon (r) = \epsilon \theta (R-r) + \epsilon_0 \theta (r-R)##
Taking the divergence of D and since there are no free charges. (external charges) we get $$ 0 = \epsilon(r) \nabla \cdot E + \delta (R-r) ( \epsilon_0 - \epsilon ) E \cdot r$$
Then, we get the possion's equation $$ \nabla \cdot E = - \delta (R-r) ( \epsilon_0 - \epsilon ) E \cdot r $$ After that I don't know how to proceed further. I solved for the potential using an appropriate green's function but the result I am getting is wrong.
Last edited: