- #1
ognik
- 643
- 2
Not following this example (PDE for Greens function) in my book:
Book states: $ \left( {\nabla}^{2} +{k}^{2}\right)G(r, r_2)=-\delta(r-r_2) = -\int \frac{e^{ip.(r-r_2)}}{\left(2\pi\right)^3} {d}^{3}p$
I recognised this as the Hemlmholtz eqtn, but cannot find where the 3rd term comes from? It looks like it could be the 3D Fourier Transform representation of the dirac-delta function? (if so a link to, or a derivation would be nice)
Then they say they solve the PDE in terms of a Fourier Integral $ G(r, r_2)=\int \frac{1}{\left(2\pi\right)^3}g_0(p) e^{ip.(r-r_2)} d^3p $
I know the Fourier Integral in 3D is $F(k)=\frac{1}{\left(2\pi\right)^{\frac{3}{2}}} \int f(r)e^{ik.r} \,d^3r $, (sqrt in denominator?) so I'm not sure what they are doing here?
Book states: $ \left( {\nabla}^{2} +{k}^{2}\right)G(r, r_2)=-\delta(r-r_2) = -\int \frac{e^{ip.(r-r_2)}}{\left(2\pi\right)^3} {d}^{3}p$
I recognised this as the Hemlmholtz eqtn, but cannot find where the 3rd term comes from? It looks like it could be the 3D Fourier Transform representation of the dirac-delta function? (if so a link to, or a derivation would be nice)
Then they say they solve the PDE in terms of a Fourier Integral $ G(r, r_2)=\int \frac{1}{\left(2\pi\right)^3}g_0(p) e^{ip.(r-r_2)} d^3p $
I know the Fourier Integral in 3D is $F(k)=\frac{1}{\left(2\pi\right)^{\frac{3}{2}}} \int f(r)e^{ik.r} \,d^3r $, (sqrt in denominator?) so I'm not sure what they are doing here?