- #1
Rising Eagle
- 38
- 0
Can't find (or maybe recognize when I see it) anything that discusses this question:
A group G is a set of members. We normally assign familiar labels on the members such as a five member group with members labeled as 0, .. , 4. Then, a group operation + is defined as GxG -> G so that a look up table can specify exactly what it means:
+ | 0 1 2 3 4
-----------------
0 | 0 1 2 3 4
1 | 1 2 3 4 0
2 | 2 3 4 0 1
3 | 3 4 0 1 2
4 | 4 0 1 2 3
I have a variable X that is characterized as manifesting (incarnating?) this group. It is said to be able to stand in for or represent any member of this group and any particular value may be substituted in at any time. I think of this variable as a viewport that can zero in on anyone member at a time. Now I create a second variable Y standing in for the same group as X and I want to add them:
X + Y = Z
How is this operation interpreted? Are X and Y each a variable representing separate and independent incarnations of the same group blueprint (essentially twins) where Z would be a new variable representing a third incarnation of the same group? Then the group op is an external mapping that dictates a rule that allows a member from one group G1 to interact with a member of a second group G2 in order to map onto a third group G3.
On the other hand, are the variables X, Y, and Z members of the one and same group G, each being able to take on any value independently from the exact same group (each is an independent viewport with the same vantage point onto the same set of group members and can focus in on anyone desired without influence by the other two variables)? Then the group op is an internal mapping that spells out a rule permitting any pair of members within the same set to interact and combine, and magically become a substitute in (become an alias for?) for a third member. If this is the case, the set is not just 5 members, but also includes every possible combination of two or more members as aliases for the original members. This, then, would be an alternate way of visualizing the structure of the group as specified by the group op. Also, in this case, G is not a blueprint or declaration, but an actual working mathematical entity itself.
If both internal and external mappings are permitted with the same group op mapping rule, then does this point out the difference between an automorphic and homomorphic mapping?
Any further insights about when and why to interpret what the group op means would be very helpful. Thx
Eagle
A group G is a set of members. We normally assign familiar labels on the members such as a five member group with members labeled as 0, .. , 4. Then, a group operation + is defined as GxG -> G so that a look up table can specify exactly what it means:
+ | 0 1 2 3 4
-----------------
0 | 0 1 2 3 4
1 | 1 2 3 4 0
2 | 2 3 4 0 1
3 | 3 4 0 1 2
4 | 4 0 1 2 3
I have a variable X that is characterized as manifesting (incarnating?) this group. It is said to be able to stand in for or represent any member of this group and any particular value may be substituted in at any time. I think of this variable as a viewport that can zero in on anyone member at a time. Now I create a second variable Y standing in for the same group as X and I want to add them:
X + Y = Z
How is this operation interpreted? Are X and Y each a variable representing separate and independent incarnations of the same group blueprint (essentially twins) where Z would be a new variable representing a third incarnation of the same group? Then the group op is an external mapping that dictates a rule that allows a member from one group G1 to interact with a member of a second group G2 in order to map onto a third group G3.
On the other hand, are the variables X, Y, and Z members of the one and same group G, each being able to take on any value independently from the exact same group (each is an independent viewport with the same vantage point onto the same set of group members and can focus in on anyone desired without influence by the other two variables)? Then the group op is an internal mapping that spells out a rule permitting any pair of members within the same set to interact and combine, and magically become a substitute in (become an alias for?) for a third member. If this is the case, the set is not just 5 members, but also includes every possible combination of two or more members as aliases for the original members. This, then, would be an alternate way of visualizing the structure of the group as specified by the group op. Also, in this case, G is not a blueprint or declaration, but an actual working mathematical entity itself.
If both internal and external mappings are permitted with the same group op mapping rule, then does this point out the difference between an automorphic and homomorphic mapping?
Any further insights about when and why to interpret what the group op means would be very helpful. Thx
Eagle