- #1
halvizo1031
- 78
- 0
Homework Statement
Suppose that G is a group in which every non-identity element has order two. show that G is commutative.
Homework Equations
The Attempt at a Solution
DOES THIS ANSWER THE QUESTION?:
Notice first that x2 = 1 is equivalent to x = x−1. Since every element of G
has an inverse, we can distribute the elements of G into subsets {x, x−1}. Since
the inverse of x−1 is x, these sets are all disjoint. All of them have either two
elements (if x = x−1) or one element (if x = x−1). Let k be the number of
two-element sets, and let j be the number of one-element sets. Then the total
number of elements of G is 2k + j.
Now notice that j > 0, since there is at least one element such that x = x−1,
namely x = 1. So we know that 2k + j is even and that j > 0. It follows that
j ≥ 2, so there must exist at least one more element x such that x = x−1. That’s
the element we were looking for.