- #1
member 428835
Given ##n## coin tosses of a biased coin with heads probability ##p##, what is the probability of guessing correctly ##k\leq n## or more? I think this is ##\sum_{i=k}^{n}C^n_{n-i}p^i(1-p)^{n-i}## but this can't be correct since it is not symmetric for ##p## vs ##1-p##. Also, what's the expected number of correct guesses we would predict the guesser to guess correctly? Sure feels something like ##np(1-p)##, but I dunno.
But now let's suppose the guesser knows there will be exactly ##k## heads tossed (##n-k## tails). In this case what would the odds of a correct guess be? We know there are ##C^n_k## different ways to arrange the heads/tails.
Thanks for any insight!
But now let's suppose the guesser knows there will be exactly ##k## heads tossed (##n-k## tails). In this case what would the odds of a correct guess be? We know there are ##C^n_k## different ways to arrange the heads/tails.
Thanks for any insight!
Last edited by a moderator: