- #1
- 3,486
- 1,165
I have been revising magnetic circuits concepts and I think I am missing something regarding H-field and mmf.
If the 100-turn primary of a transformer is energized with 1A dc, its mmf will be 100A-T. And all the line integrals H.dl enclosing the primary coil will equal 100A. As per magnetic circuit laws, H-field in the core is very small compared to that in the space between the limbs, which is correct considering the huge difference in permeabilities of the two media.
My question is, how is the H-field minimum inside the primary coil? The H field is created by electric currents and does not depend on the permeability of the material. How does it get redistributed in the magnetic circuit (little in the core, more in the air gaps etc)? Does magnetization of the core have an effect on this mechanism?
Any inputs are appreciated.
If the 100-turn primary of a transformer is energized with 1A dc, its mmf will be 100A-T. And all the line integrals H.dl enclosing the primary coil will equal 100A. As per magnetic circuit laws, H-field in the core is very small compared to that in the space between the limbs, which is correct considering the huge difference in permeabilities of the two media.
My question is, how is the H-field minimum inside the primary coil? The H field is created by electric currents and does not depend on the permeability of the material. How does it get redistributed in the magnetic circuit (little in the core, more in the air gaps etc)? Does magnetization of the core have an effect on this mechanism?
Any inputs are appreciated.