- #1
Foracle
- 30
- 8
- TL;DR Summary
- I tried calculating the time derivative of the probability density of a wavefunction but end up getting $$\frac{d}{dt}P(x,t)=0$$ for any wavefunction.
##\frac{d}{dt}P(x,t)=\frac{d}{dt}<\Psi|\Psi>##
##=<\frac{d}{dt}\Psi|\Psi>+<\Psi|\frac{d}{dt}\Psi>##
By using ##\frac{d}{dt}=\frac{-i}{\hbar}H## ,
##\frac{d}{dt}P(x,t)=<\frac{-i}{\hbar}H\Psi|\Psi>+<\Psi|\frac{-i}{\hbar}H\Psi>##
##=\frac{i}{\hbar}<\Psi|H\Psi> - \frac{i}{\hbar}<\Psi|H\Psi> = 0##
The above equation shows that the probability density is not changing in time for any state, though clearly this situation only applies to energy eigenstate. Can someone tell me where I went wrong?
Edit : Another problem that I have that resembles this is :
For a time independent operator Q, a quick (and probably naive) calculation shows that [H,Q] = 0. But take position operator for example ##\hat{x}##. It's clear that ##\frac{d}{dt}<\hat{x}>## which can be written as ##\frac{d}{dt}<\hat{x}> = \frac{i}{\hbar}<[H,\hat{x}]>## is not zero for most states.
##=<\frac{d}{dt}\Psi|\Psi>+<\Psi|\frac{d}{dt}\Psi>##
By using ##\frac{d}{dt}=\frac{-i}{\hbar}H## ,
##\frac{d}{dt}P(x,t)=<\frac{-i}{\hbar}H\Psi|\Psi>+<\Psi|\frac{-i}{\hbar}H\Psi>##
##=\frac{i}{\hbar}<\Psi|H\Psi> - \frac{i}{\hbar}<\Psi|H\Psi> = 0##
The above equation shows that the probability density is not changing in time for any state, though clearly this situation only applies to energy eigenstate. Can someone tell me where I went wrong?
Edit : Another problem that I have that resembles this is :
For a time independent operator Q, a quick (and probably naive) calculation shows that [H,Q] = 0. But take position operator for example ##\hat{x}##. It's clear that ##\frac{d}{dt}<\hat{x}>## which can be written as ##\frac{d}{dt}<\hat{x}> = \frac{i}{\hbar}<[H,\hat{x}]>## is not zero for most states.
Last edited: