- #36
- 24,775
- 792
The statement in the Bianchi Haggard Rovelli abstract highlighted above
"...Oeckl's boundary formalism incorporates QSM naturally, and we formulate general-covariant QSM in this language."
makes it urgent to ask questions about Oeckl's formulation of quantum theory. He has recently come out with a radically different alternative version which requires fewer axioms. I gather it really is proposed as an optional alternative, not as a replacement. The earlier axioms are included in an appendix.
The new alternative version is apt to strike people as conceptually unfamiliar---it uses positive real numbers (a generalized notion of probability) in place of complex amplitudes (!) but promises to be able to recover conventional quantum mechanical results. Lucian Hardy is credited with having inspired this seemingly risky gambit. On the other hand this alternative Oeckl formulation is IMHO aesthetically appealing. It certainly is not the version being used by the Loop gravity authors but I don't want to ignore it.
http://arxiv.org/abs/1212.5571
A positive formalism for quantum theory in the general boundary formulation
Robert Oeckl (CCM-UNAM)
(Submitted on 21 Dec 2012)
We introduce a new "positive formalism" for encoding quantum theories in the general boundary formulation, somewhat analogous to the mixed state formalism of the standard formulation. This makes the probability interpretation more natural and elegant, eliminates operationally irrelevant structure and opens the general boundary formulation to quantum information theory.
28 pages
A recent exposition of the more familiar older form of Oeckl's formulation of quantum theory is here:
http://arxiv.org/abs/1201.1877
Schrödinger-Feynman quantization and composition of observables in general boundary quantum field theory
Robert Oeckl (UNAM)
(Submitted on 9 Jan 2012)
We show that the Feynman path integral together with the Schrödinger representation gives rise to a rigorous and functorial quantization scheme for linear and affine field theories. Since our target framework is the general boundary formulation, the class of field theories that can be quantized in this way includes theories without a metric spacetime background. We also show that this quantization scheme is equivalent to a holomorphic quantization scheme proposed earlier and based on geometric quantization. We proceed to include observables into the scheme, quantized also through the path integral. We show that the quantized observables satisfy the canonical commutation relations, a feature shared with other quantization schemes also discussed. However, in contrast to other schemes the presented quantization also satisfies a correspondence between the composition of classical observables through their product and the composition of their quantized counterparts through spacetime gluing. In the special case of quantum field theory in Minkowski space this reproduces the operationally correct composition of observables encoded in the time-ordered product. We show that the quantization scheme also generalizes other features of quantum field theory such as the generating function of the S-matrix.
47 pages
One slight inconsistency of terminology: in the more recent paper an infinitesimally thin region is called a "slice". What is now called a slice region was called an "empty region" in the earlier paper. This change is pointed out by the author. In any case confusion is unlikely to result. Overall the style is conveniently thorough and clear.
"...Oeckl's boundary formalism incorporates QSM naturally, and we formulate general-covariant QSM in this language."
makes it urgent to ask questions about Oeckl's formulation of quantum theory. He has recently come out with a radically different alternative version which requires fewer axioms. I gather it really is proposed as an optional alternative, not as a replacement. The earlier axioms are included in an appendix.
The new alternative version is apt to strike people as conceptually unfamiliar---it uses positive real numbers (a generalized notion of probability) in place of complex amplitudes (!) but promises to be able to recover conventional quantum mechanical results. Lucian Hardy is credited with having inspired this seemingly risky gambit. On the other hand this alternative Oeckl formulation is IMHO aesthetically appealing. It certainly is not the version being used by the Loop gravity authors but I don't want to ignore it.
http://arxiv.org/abs/1212.5571
A positive formalism for quantum theory in the general boundary formulation
Robert Oeckl (CCM-UNAM)
(Submitted on 21 Dec 2012)
We introduce a new "positive formalism" for encoding quantum theories in the general boundary formulation, somewhat analogous to the mixed state formalism of the standard formulation. This makes the probability interpretation more natural and elegant, eliminates operationally irrelevant structure and opens the general boundary formulation to quantum information theory.
28 pages
A recent exposition of the more familiar older form of Oeckl's formulation of quantum theory is here:
http://arxiv.org/abs/1201.1877
Schrödinger-Feynman quantization and composition of observables in general boundary quantum field theory
Robert Oeckl (UNAM)
(Submitted on 9 Jan 2012)
We show that the Feynman path integral together with the Schrödinger representation gives rise to a rigorous and functorial quantization scheme for linear and affine field theories. Since our target framework is the general boundary formulation, the class of field theories that can be quantized in this way includes theories without a metric spacetime background. We also show that this quantization scheme is equivalent to a holomorphic quantization scheme proposed earlier and based on geometric quantization. We proceed to include observables into the scheme, quantized also through the path integral. We show that the quantized observables satisfy the canonical commutation relations, a feature shared with other quantization schemes also discussed. However, in contrast to other schemes the presented quantization also satisfies a correspondence between the composition of classical observables through their product and the composition of their quantized counterparts through spacetime gluing. In the special case of quantum field theory in Minkowski space this reproduces the operationally correct composition of observables encoded in the time-ordered product. We show that the quantization scheme also generalizes other features of quantum field theory such as the generating function of the S-matrix.
47 pages
One slight inconsistency of terminology: in the more recent paper an infinitesimally thin region is called a "slice". What is now called a slice region was called an "empty region" in the earlier paper. This change is pointed out by the author. In any case confusion is unlikely to result. Overall the style is conveniently thorough and clear.
Last edited: