I Hamiltonian formalism and partition function

AI Thread Summary
In Hamiltonian formalism, generalized coordinates and conjugate momenta are crucial for describing systems. For a dipole in a magnetic field, the Hamiltonian is defined as H = -μB cos(θ), where θ is the angle between the dipole moment and the magnetic field. Both θ and cos(θ) can be treated as generalized coordinates, with the associated conjugate momentum Pθ linked to angular momentum. This approach is essential for computing the partition function for the dipole system using the integral formulation. Understanding these relationships is key to analyzing the thermodynamic properties of the dipole in the magnetic field.
Simobartz
Messages
13
Reaction score
1
TL;DR Summary
is it possible to find a (q,p) couple for a dipole in a magnetic field?
In hamiltonian formalism we have the generalized coordinates ##q_i## and the conjugates moments ##p_i##.
For a dipole in a give magnetic field ##B## the Hamiltonian is ##H=-\mu B cos \theta## where ##\theta## is the angle between ##\vec \mu## and ##\vec B##.
Can i consider ##\theta## or ##cos \theta## as a generalized coordinate? if yes what is the associated conjugate momentum ##P_\theta##?
I ask this question because i'd like to compute the partition function for a dipole in a magnetic field starting from ##\frac 1 {\hbar ^f} \int dr^fdp^f exp(-\beta H(r_1...r_f,p_1...p_f))##
 
Last edited by a moderator:
Physics news on Phys.org
Either ##\theta## or ##\cos\theta## could be considered as a generalised coordinate. The corresponding canonical momentum would be related to angular momentum.
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top