Hamiltonian of the quantised Klein-Gordon theory

In summary: It's not about self-confidence, it's about asking more knowledgeable people to check if I'm doing things right, and being told if I am not. I generally learn something new from the discussions, so it's all good!
  • #1
spaghetti3451
1,344
34
The Klein-Gordon field ##\phi(\vec{x})## and its conjugate momentum ##\pi(\vec{x})## is given, in the Schrodinger picture, by

##\phi(\vec{x})=\int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2\omega_{\vec{p}}}}[a_{\vec{p}}e^{i\vec{p}\cdot{\vec{x}}}+a_{\vec{p}}^{\dagger}e^{-i\vec{p}\cdot{\vec{x}}}]##
##\pi(\vec{x})=\int \frac{d^{3}p}{(2\pi)^{3}} (-i)\sqrt{\frac{\omega_{\vec{p}}}{2}}[a_{\vec{p}}e^{i\vec{p}\cdot{\vec{x}}}-a_{\vec{p}}^{\dagger}e^{-i\vec{p}\cdot{\vec{x}}}]##

I would like to show that the Hamiltonian ##H## of the Klein-Gordon theory is given by

##H = \int \frac{d^{3}p}{(2\pi)^{3}}\omega_{\vec{p}}[a_{\vec{p}}^{\dagger}a_{\vec{p}}+\frac{1}{2}(2\pi)^{3}\delta^{(3)}(0)]##.

Here's my attempt:

##H=\frac{1}{2}\int d^{3}x [\pi^{2}+(\nabla\phi)^{2}+m^{2}\phi^{2}]##

##=\frac{1}{2}\int \frac{d^{3}x\ d^{3}p\ d^{3}q}{(2\pi)^{6}}\Big[ -\frac{\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}}{2} \Big( a_{\vec{p}}e^{i\vec{p}\cdot{\vec{x}}}-a_{\vec{p}}^{\dagger}e^{-i\vec{p}\cdot{\vec{x}}} \Big) \Big( a_{\vec{q}}e^{i\vec{q}\cdot{\vec{x}}}-a_{\vec{q}}^{\dagger}e^{-i\vec{q}\cdot{\vec{x}}} \Big)##
##+ \frac{1}{2\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}} \Big( i\vec{p}a_{\vec{p}}e^{i\vec{p}\cdot{\vec{x}}}-i\vec{p}a_{\vec{p}}^{\dagger}e^{-i\vec{p}\cdot{\vec{x}}} \Big)\cdot{\Big( i\vec{q}a_{\vec{q}}e^{i\vec{q}\cdot{\vec{x}}}-i\vec{q}a_{\vec{q}}^{\dagger}e^{-i\vec{q}\cdot{\vec{x}}} \Big)}+ \frac{m^{2}}{2\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}} \Big( a_{\vec{p}}e^{i\vec{p}\cdot{\vec{x}}}+a_{\vec{p}}^{\dagger}e^{-i\vec{p}\cdot{\vec{x}}} \Big)\Big(a_{\vec{q}}e^{i\vec{q}\cdot{\vec{x}}}+a_{\vec{q}}^{\dagger}e^{-i\vec{q}\cdot{\vec{x}}} \Big)\Big]##

##=\frac{1}{4}\int \frac{d^{3}p\ d^{3}q}{(2\pi)^{3}}\Big[-\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}\Big(a_{\vec{p}}a_{\vec{q}}\delta(\vec{p}+\vec{q})-a_{\vec{p}}^{\dagger}a_{\vec{q}}\delta(-\vec{p}+\vec{q})-a_{\vec{p}}a_{\vec{q}}^{\dagger}\delta(\vec{p}-\vec{q})+a_{\vec{p}}^{\dagger}a_{\vec{q}}^{\dagger}\delta(-\vec{p}-\vec{q})\Big)+\frac{1}{\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}}\Big(-\vec{p}\cdot{\vec{q}}a_{\vec{p}}a_{\vec{q}}\delta(\vec{p}+\vec{q})+\vec{p}\cdot{\vec{q}}a_{\vec{p}}^{\dagger}a_{\vec{q}}\delta(-\vec{p}+\vec{q})+\vec{p}\cdot{\vec{q}}a_{\vec{p}}a_{\vec{q}}^{\dagger}\delta(\vec{p}-\vec{q})-\vec{p}\cdot{\vec{q}}a_{\vec{p}}^{\dagger}a_{\vec{q}}^{\dagger}\delta(-\vec{p}-\vec{q})\Big)+\frac{m^{2}}{\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}}\Big(a_{\vec{p}}a_{\vec{q}}\delta(\vec{p}+\vec{q})+a_{\vec{p}}^{\dagger}a_{\vec{q}}\delta(-\vec{p}+\vec{q})+a_{\vec{p}}a_{\vec{q}}^{\dagger}\delta(\vec{p}-\vec{q})+a_{\vec{p}}^{\dagger}a_{\vec{q}}^{\dagger}\delta(-\vec{p}-\vec{q})\Big)\Big]##

##=\frac{1}{4}\int \frac{d^{3}p}{(2\pi)^{3}}\Big[- \omega_{\vec{p}} a_{\vec{p}} a_{-\vec{p}} +
\omega_{\vec{p}} a_{\vec{p}}^{\dagger} a_{\vec{p}} +
\omega_{\vec{p}} a_{\vec{p}} a_{\vec{p}}^{\dagger} - \omega_{\vec{p}} a_{\vec{p}}^{\dagger}
a_{-\vec{p}}^{\dagger} + \frac{1}{\omega_{\vec{p}}} \vec{p}^{2} a_{\vec{p}} a_{-\vec{p}} + \frac{1}{\omega_{\vec{p}}} \vec{p}^{2} a_{\vec{p}}^{\dagger} a_{\vec{p}} + \frac{1}{\omega_{\vec{p}}}
\vec{p}^{2} a_{\vec{p}} a_{\vec{p}}^{\dagger} + \frac{1}{\omega_{\vec{p}}} \vec{p}^{2}
a_{\vec{p}}^{\dagger} a_{-\vec{p}}^{\dagger} + \frac{m^{2}}{\omega_{\vec{p}}} a_{\vec{p}} a_{-\vec{p}} +
\frac{m^{2}}{\omega_{\vec{p}}} a_{\vec{p}}^{\dagger} a_{\vec{p}} + \frac{m^{2}}{\omega_{\vec{p}}} a_{\vec{p}} a_{\vec{p}}^{\dagger} + \frac{m^{2}}{\omega_{\vec{p}}} a_{\vec{p}}^{\dagger} a_{-\vec{p}}^{\dagger}\Big]##

##=\frac{1}{4}\int \frac{d^{3}p}{(2\pi)^{3}}\frac{1}{\omega_{\vec{p}}}\Big[(-\omega_{\vec{p}}^{2}+\vec{p}^{2}+m^{2})a_{\vec{p}}a_{-\vec{p}}+(-\omega_{\vec{p}}^{2}+\vec{p}^{2}+m^{2})a_{\vec{p}}^{\dagger}a_{-\vec{p}}^{\dagger}+(\omega_{\vec{p}}^{2}+\vec{p}^{2}+m^{2})a_{\vec{p}}a_{\vec{p}}^{\dagger}+(\omega_{\vec{p}}^{2}+\vec{p}^{2}+m^{2})a_{\vec{p}}^{\dagger}a_{\vec{p}}\Big]##

##=\frac{1}{4}\int \frac{d^{3}p}{(2\pi)^{3}}\frac{1}{\omega_{\vec{p}}}\Big[(-\omega_{\vec{p}}^{2}+\vec{p}^{2}+m^{2})(a_{\vec{p}}a_{-\vec{p}}+a_{\vec{p}}^{\dagger}a_{-\vec{p}}^{\dagger})+(\omega_{\vec{p}}^{2}+\vec{p}^{2}+m^{2})(a_{\vec{p}}a_{\vec{p}}^{\dagger}+a_{\vec{p}}^{\dagger}a_{\vec{p}})\Big]##

##=\frac{1}{2} \int \frac{d^{3}p}{(2\pi)^{3}}\omega_{\vec{p}}[a_{\vec{p}}a_{\vec{p}}^{\dagger}+a_{\vec{p}}^{\dagger}a_{\vec{p}}]##, where we used ##\omega_{\vec{p}}^{2}=\vec{p}^{2}+m^{2}## to eliminate the first term and simplify the second term

##=\frac{1}{2} \int \frac{d^{3}p}{(2\pi)^{3}}\omega_{\vec{p}}[[a_{\vec{p}},a_{\vec{p}}^{\dagger}]+a_{\vec{p}}^{\dagger}a_{\vec{p}}+a_{\vec{p}}^{\dagger}a_{\vec{p}}]##

##=\int \frac{d^{3}p}{(2\pi)^{3}}\omega_{\vec{p}}[a_{\vec{p}}^{\dagger}a_{\vec{p}}+\frac{1}{2}[a_{\vec{p}},a_{\vec{p}}^{\dagger}]]##

##=\int \frac{d^{3}p}{(2\pi)^{3}}\omega_{\vec{p}}[a_{\vec{p}}^{\dagger}a_{\vec{p}}+\frac{1}{2}(2\pi)^{3}\delta^{(3)}(0)]##

Is my working correct?
 
  • Like
Likes DuckAmuck
  • #3
It's correct.

You should be more self-confident about your mathematical skills. :smile:
 
Last edited:
  • #4
Demystifier said:
It's correct.

Thanks!

Demystifier said:
You should be more self-confident about your mathematical skills. :smile:

I am still very new to the kind of calculations which form the bread and butter of QFT and GR, and so I write such prosaic and detailed answers just to confirm with others that I don't have the occasional flawed conceptual understanding of how to do the calculations.
 

FAQ: Hamiltonian of the quantised Klein-Gordon theory

What is the Hamiltonian of the quantised Klein-Gordon theory?

The Hamiltonian of the quantised Klein-Gordon theory is a mathematical operator that represents the total energy of a system of particles described by the Klein-Gordon equation. It is used to describe the quantum mechanics of relativistic particles, such as electrons or photons.

How is the Hamiltonian derived for the quantised Klein-Gordon theory?

The Hamiltonian for the quantised Klein-Gordon theory is derived from the classical Klein-Gordon equation using the canonical quantisation method. This involves replacing the classical variables with operators and imposing the canonical commutation relations. The resulting Hamiltonian is an operator that acts on the wave function of the system.

What is the significance of the Hamiltonian in the quantised Klein-Gordon theory?

The Hamiltonian is a fundamental quantity in quantum mechanics, representing the total energy of a system. In the quantised Klein-Gordon theory, it is used to calculate the evolution of the wave function and the energy levels of particles. It also plays a crucial role in determining the dynamics and interactions of particles described by the Klein-Gordon equation.

How is the Hamiltonian used in the quantised Klein-Gordon theory?

The Hamiltonian is used to calculate the time evolution of the wave function in the quantised Klein-Gordon theory. By solving the Schrödinger equation with the Hamiltonian as the operator, we can determine the energy levels and probabilities of different particle states. It is also used in perturbation theory to study the effects of small changes in the Hamiltonian on the system.

Are there any limitations to the Hamiltonian of the quantised Klein-Gordon theory?

Like any mathematical model, the Hamiltonian of the quantised Klein-Gordon theory has its limitations. It is based on the assumptions of the Klein-Gordon equation, which is a relativistic equation that does not take into account the effects of quantum field theory. Additionally, it does not account for the spin of particles, which is important in describing certain physical phenomena. Other quantum mechanical models, such as the Dirac equation, may be more suitable for these situations.

Similar threads

Replies
4
Views
2K
Replies
6
Views
1K
Replies
1
Views
827
Replies
1
Views
847
Replies
5
Views
1K
Replies
4
Views
2K
Back
Top